
� � � � � �

��	
���

�������� ��

� � � � � �

� � ������� �

� !��"#$%&'()*�

+ , - � . / 0 1 2 3

���������

�	
��	
�

�����

Design and Implementation of a

Configurable Wrapper for

Web Information Integration

��

��������	
����������������������

 !"#$�%&'()*+,-./�0"1$2�345%6�78��9:

;<�=>?&'*@A�BC�DEFGHI�JAK�L�3M:��NO2

PQ��DNORSTUVWXYZ[2\�]B^_Z[4`abcde

Dfg��hijkD6l\mno�pq/rs�t��u
�� v�3�

wF	\0xyBC�3z{|}n~�����D����p��BC��

D���9����0�l����fgn��D v���VWBZ[D��

EF���J*@p��NO2(=VWB��Z[�n�44`Dfg���

D��0���n ¡.¢£l�Kp���D����DBC¤¥��An*

@:¦§¨©cªD«¬K®~�Z[¯°D�±²³(´µnBCD¶j2

Kp·¸OZ[�n¹ºEFD��»*@bc¼½�¾¿ÀÁ�(EFnqÂ

!BC�t2

�hijkD6l\�0TUVW\�]ÃY�ÄDEF2ÅÆEn vD

lÇÈÉ!nBCD�3�GnDo�\�¿DBC=ÊË�DÌÍ(µ!nÎ

�DÏÐ�C4ÑÒÓ lÇ(O�Ô�D.Õ2Ö×ØnÙ6uFÚD4Û

�Í�ÜÝÞßà�á\â�ãä4ÑåæD\�]æç(O�~�.ÕD�

è2����£D��¡E!n=CF���é0êÓëì�Eníîhik

ï20ÊVW¤Ö9����ðñòólÇDHÀGhijkD¤¥�ô-õö

÷øù�Gn4Ñú�lÇû�üÓÃÌý(�4ÛþAD��2�����D

����	�
����������p�¸����D�����!BCÊ

åD¤¥���D��(E!nBCF2

u
�WW��G���4ûKa��äDHI���G��äDHÀ�K

p��n ��!"£�D�#G$%2P4Q��°&µKärYKp'()

�EÏ6nD��WW2

��

�*+ð,õD-.\�7/0K:a&rßõ1Dð,K23�P4ð

,:0K¡Ê5��6å2ð,23hi7-hi§$Gðñ8\3D49:�

;<lÇ(wrapper)D=$a>óðñ82�!0K;�'?Ü@Drßðñ8	

3DAB"�P4;<lÇ���CDß�ðñ8D�"%K�EF %O2G

%�H�*+ð,õDIJ"�c0K"�p HTML �LDMNOPQRS�

K�E�!T4õ1%��F ';<lÇ�4ß=�U¿�VWxy�X�

3DEv2§����4Yè���Aõ1D;<lÇ0K�Z[�¤S2P4

;<lÇc\0Kå�ð,23hi\�VW(0K�å�'(¹º&J]õ1

>óD^åhi	\2

n�OP!4Y��4_õ`�P4õ`äDðñ�ðñDYa�òóè�

Kpðñ_3èÇDbcde2VW�f!PßbcdeDqg/h£ia�j

h£KPßdeF DlÇ2P4ßh£i0K�Þk?ÊslDõ1mnJv

&J]�VW0KopJ²qrD HTTPºsDtu�cookie�KpBCc3k

víd�D HTML �L2n�VWwxQh£!4hyD��a�zn�?{

£Dè�D0£"2��R/(|ïn�Dhi0Kc¬}~WÊ5�Z[¤S

*+ð,õõ1;<lÇ2

§��D_�7���4�\��ð,23hiv4�T����VW��

!*+ð,õ\ðñ>ó?����D�t2��������n�?OPDd

eWNDLKp'7��Aõ1D>ó*@&J]2�X���WNDLlÇh£

D6lKp2Yhi�vDè�2�����n��!��hi?fD��2�

���\�T���!G§����D�±2u
�n�����\o�n�D

hi�é0c*qÂD�tKpëa0*D�±è�2

National Taiwan University

Department of Computer Science

and Information Engineering

M.S. Thesis

Design and Implementation of a
Configurable Wrapper for

Web Information Integration

Author: Hung-Hsuan Huang

Supervisor: Li-Chen Fu

July 2000

Acknowledgements

First at all, I wish to thank three professors. My advisor, Dr. Chun-Nan Hsu

helped me a lot during the whole process of system design. He also spent plenty of

valuable time to correct and refine my poorly written thesis draft. Prof. Yung-Jen Hsu

taught me the conscientious attitude for being a graduate student and gave me many

useful comments. Prof. Li-Chen Fu always gives me a hand immediately without any

further consideration.

Particular thanks are owed to my colleagues at the Adaptive Internet Intelligent

Agents Lab. of IIS, Academia Sinica. My project team members, Elan Hung and

Chien-Chi Chang made a great contribution to system development while Harianto

Siek helped me to conduct the experiments.

Then there are my colleagues at the Intelligent Mobile Robot Lab. of CSIE,

National Taiwan University. They gave me many helpful suggestions and ideas on the

slides and representation of my oral examination: Euna Jeong, Han-Shen Huang,

Wan-Rong Jih, Kong-Lung Lin, Shih-Jui Lin, and Ray-Li Chen.

Finally I am grateful to my parents and sisters, they always support me and

forgive my willful behaviors.

i

Contents

List of Figures iv

List of Tables v

List of Codes vi

List of Algorithms vii

Abstract 1

Chapter 1 Introduction 3

1.1 Information Integration……………………………………………………. 3

1.2 Web Information Integration………………………………………………. 5

1.2.1 Web Navigation with HTML Documents………………………….. 5

1.2.2 Web Site Navigation Problem……………………………………… 7

1.2.3 Data Extraction Problem…………………………………………… 9

ii

1.2.5 Our Approach………………………………………………………. 10

1.3 Organization of this Thesis………………………………………………… 13

Chapter 2 Web Navigation Description Language (WNDL) 15

2.1 Preliminary………………………………………………………………… 15

2.1.1 A Brief Introduction to XML………………………………………. 16

2.1.2 Term Definitions…………………………………………………… 18

2.1.3 Organization of WNDL…………………………………………….. 19

2.2 Data Web Map (DWM)……………………………………………………. 20

2.2.1 Data Web Map Node……………………………………………….. 21

2.2.2 Data Web Map Edge………………………………………………... 23

2.3 Navigation Program……………………………………………………….. 26

2.3.1 WNDL Session……………………………………………………... 26

2.3.2 WNDL Request…………………………………………………….. 27

2.3.3 WNDL Loop……………………………………………………….. 29

2.3.4 WNDL Episode…………………………………………………….. 30

2.4 Limitations and Issues……………………………………………………... 32

Chapter 3 WNDL Executor Implementation 35

3.1 Architecture and Implementation of WNDL Executor……………………. 35

3.2 WNDL Program Evaluation Procedure……………………………………. 37

3.2.1 A Brief Introduction to Datalog……………………………………. 37

3.2.2 Executor Variable Binding and Propagation……………………….. 40

3.2.3 WNDL Program Evaluation Procedure…………………………….. 41

iii

3.3 Exception Handling………………………………………………………... 46

Chapter 4 Experiments and Evaluations 47

4.1 Expressiveness of WNDL…………………………………………………. 47

4.1.1 Chain and Loop…………………………………………………….. 48

4.1.2 Arbitrary Number of Data Extraction Passes………………………. 50

4.2 Utility of WNDL Wrapper………………………………………………… 52

4.2.1 Configuring a New Wrapper……………………………………….. 52

4.2.2 Generality Across Application Domains…………………………… 54

Chapter 5 Related Work 55

5.1 Web Automation Languages………………………………………………. 55

5.1.1 Web Interface Definition Language (WIDL)………………………. 55

5.1.2 Web Language (WebL) and Hippo Core Language (HCL)………… 56

5.2 Work that Addresses the Web Navigation Problem……………………….. 59

Chapter 6 Conclusion 61

6.1 Summary…………………………………………………………………... 61

6.2 Critiques and Future Work………………………………………………… 62

Bibliography 63

iv

List of Figures

1 . Information Integration System Architecture Diagram………………………... 4

2 . Web page structure of amazon.com in DWM representation………………….. 21

3 . Execution of a WNDL request…………………………………………………. 27

4 . Complex Loop Structure……………………………………………………….. 30

5 . Dependency graph between episodes………………………………………….. 32

6 . WNDL Executor Architecture…………………………………………………. 35

7 . Dependency graph of the predicates in Code 7………………………………... 38

8 . A next page link that can be found in a return page from Yahoo!.…………….. 45

9 . DWM diagram of TaipeiCity and TTimes……………………………………… 49

10 . DWM diagram of NYC………………………………………………………… 49

11 . DWM diagram of CTCareer…………………………………………………… 50

12 . DWM diagram of JobsDB……………………………………………………... 50

13 . DWM diagram of 104Bank…………………………………………………….. 51

v

List of Tables

1 . Queries to amazon.com and BuyBooks.com with book title, “Core Java”…….. 31

2 . Primitive Functions Used in Algorithm 3……………………………………… 42

3 . Web Sites in the WNDL Experiment…………………………………………... 48

4 . Twenty-seven Web sites that were used in the NCTU experiment…………….. 53

vi

List of Codes

1 . An Example Subplan for Software Lego Executor……………………………. 10

2 . Nodes in DWM specification of amazon.com…………………………………. 22

3 . Edges in WNDL specification of amazon.com………………………………… 24

4 . <VarDeclr> block in a Session……………………………………………... 27

5 . Example of Request element…………………………………………………... 28

6 . Example of a self-looping edge………………………………………………... 29

7 . An Example Datalog Program…………………………………………………. 38

8 . WNDL program in datalog representation…………………………………….. 40

9 . A WebL function excerpted from [14], which shops in amazon.com.………… 58

vii

List of Algorithms

1 . Simple evaluation algorithm of datalog………………………………………... 39

2 . An algorithm that incrementally evaluates datalog programs…………………. 40

3 . WNDL Evaluation Procedure………………………………………………….. 44

viii

1

Abstract

Utilization of the World Wide Web can be boosted if we can integrate information

from various Web sites together. Information integrating systems rely on an

intermediate software layer called wrappers to access connected Web information

sources. Wrapper construction is often specially hand coded to accommodate the

differences between each Web site. However, due to the interactive nature of Web

browsing, unreliability of the Web, and the looseness of HTML, to program a Web

wrapper by hand is error-prone and time-consuming. This thesis provides a solution

for rapidly building Web wrappers for information integration systems and other

applications that may be benefited by automated Web access. We defined a

meta-language providing a representation of a set of Web pages and data on these

pages, as well as how to locate the data, extract the data and combine the data. An

interpreter/executor of this language was then implemented for running scripts written

in this language. This executor can automate almost all types of Web browsing

behaviors and tolerate dynamically generated HTTP request parameters, cookies, and

illy-structured HTML. A series of experiments was conducted to evaluate the

feasibility of our approach. The result shows that base on our meta-language, practical

Web information integration systems can be rapidly constructed for a variety of

application domains.

2

3

Chapter 1

Introduction

1.1 Information Integration

The purpose of building an information integration system is a three fold. First, we

want to provide its users a uniform query interface to multiple connected information

sources, which may be heterogeneous. Second, we want to keep the users from the

detailed knowledge of individual query language and information locating procedure

of each source. Third, we want to automate the task of integrating pieces of data from

various information sources.

Current information integration systems are generally built with the architecture

depicted in Figure 1 and work in the manner described below. A set of domain

relations and source descriptions are defined according to the application domain

where this system will be used and the information sources that are accessible to this

system. Domain relations represent concepts of the application domain while source

descriptions include source relations representing the contents of sources and

configuration for locating and obtaining data from corresponding source.

4

Figure 1. Information Integration System Architecture Diagram

Users of these systems formulate their queries in domain relation terms. In order

to answer these queries, it is necessary to specify a set of relationships and mappings

between domain relations and source relations. A query planner is required to

transform user queries to a sequence of source queries. These newly generated queries

are called query plans, which are telling which sources to query, how to query the

sources, and how to integrate the data together.

To let the mediators be able to accommodate the differences between various

types of externally connected information sources, each has its own access

mechanism, query language, and data format, wrapper programs are built. They serve

as the translators between mediators and the information sources. Wrappers provide a

uniform access interface for each type of information sources to the mediator. They

translate mediator query language to the query language of each source, obtain query

result from the connected source, transform the query result to a uniform data format

and send it back to the mediator. Each type of information sources requires a wrapper

program to handle. In the example shown in the diagram, this mediator utilizes five

different wrappers to integrate data from five types of information sources: two

different types of database systems, one knowledge base, and two types of Web pages.

Data Base
Type 1

User

Wrapper 1

Web Page

Wrapper 4 Wrapper 5

Source
Descriptions

Data Base
Type 2

Knowledge
Base

1

Wrapper 2 Wrapper 3

Mediator

User Interface

Domain
Relations

Web
Pages

5

Information integration can add value to each individual piece of data. For

instance, a demonstrating system named TheaterLoc [4] integrates data from five

different information sources, one for restaurant information, one for movie show

time information, one for movie preview videos, and two for map information. At first,

users of TheaterLoc choose where they want to gather information of restaurants or

theaters via the Web interface of TheaterLoc, an interactive map will immediately

pump up. Users can then choose highlighted spots on that map to obtain more detailed

information such as reviews, pricing information, and rating for restaurants, movie

show time, and preview of movies of theaters. This integrated system provides its user

a single cohesive application with seamless integrated information that cannot easily

be done by a single information provider and shows the benefits of information

integration systems.

1.2 Web Information Integration

Nowadays the World Wide Web has become an important and abundant information

source. The value of the information on the Web can be even boosted if the relevant

data from various Web sites can be integrated together. However, this information1

integration task is not easy because the Web environment is designed for human users

rather than for software agents. In this section we will discuss the problems we will

encounter in building a wrapper for Web information integration systems.

1.2.1 Web Navigation with HTML Documents

This section briefly introduces HTTP (Hyper Text Transfer Protocol) and HTML

(Hypertext Markup Language) features related to Web wrapper construction.

Currently, most of Web pages are written in HTML. The number of XML

documents is increasing but still very few compared to HTML. Hence, we will focus

on handling of HTML documents in this thesis. HTML pages use single directed

hyper links to connect each other. Hyper links are specified by <A> tags in HTML.

The target URL of the target page is specified as the value of the HREF attribute of

<A> tags. The other typical way to make two Web pages “linked” is via <Form> tags.

HTML forms allow Web users to send information or queries to Web servers. The

1 In our discussion, we consider only integration of “text-only” data in Web environment. Multimedia
information integration can be realized by extending our approach but in general is beyond the scope of
this thesis.

6

information is then processed by a CGI (Common Gateway Interface) program hosted

on the Web server, which will generate a response page to the user’s browser. These

CGI programs are specified as the action attribute value of <Form>’s. Although there

are many alternative ways to produce interactive and server-side dynamically

generated Web pages, such as ASP (Active Server Pages), Java Servlet, JSP (Java

Server Page), etc, their interface to clients still follows the standard <Form> syntax.

The behavior of CGI programs is then determined by a sequence of name-value

pairs sent by a Web client to the server. These name-value pairs are obtained from the

various controls in the <Form> block. There are several types of form controls,

including text areas, buttons, check boxes, radio buttons, etc. However, their

underlying interface protocols are basically the same. That is, by name-value pairs

parameter passing. Two methods are defined in HTTP to send these name-value pairs:

get and post. When CGI parameters are sent by get method, they are appended to the

end of the URL of the CGI program. The syntax of parameter passing starts by a

question mark “?” followed by the name-value pairs, which are separated with each

other by an ampersand “&”. Suppose the URL of a CGI program is

http://site1.nyc.gov.tw/db/index.asp, with parameters sss=1, and ttt=2. Then the

complete URL to invoke that CGI program will look like:

http://site1.nyc.gov.tw/db/index.asp?sss=1&ttt=2.

Post sends CGI parameters as a separate section following the HTTP headers and

can send a larger amount of information than get. When a Web user clicks a button

within a HTML form, these parameters will be sent by the browser to the Web server

and trigger the operation of the specified CGI program. When the query result is too

large, it usually will be rendered in multiple pages. Each page contains a certain

number of data records and a link to next page is provided. Again this link to next

page can be either a static link or another CGI query form.

Another frequently used mechanism for Web server/client interaction is cookie.

Cookie is a piece of information for storing state of interaction between server side

and client side. When responding a HTTP request, server attaches a Set-Cookie header

containing cookie information with the returning document. The cookie will then be

stored in the client side. When the client side continues to issue HTTP requests, it

matches the stored cookies with the issuing request’s URL and sends corresponding

cookies with the request. Cookies are widely used by on-line merchants. Cookies can

store currently selected items, payment options, registration information, and free the

users from retyping the same information on following connections. Sites can also

7

store user preferences on the client side, when the client connects to those sites again.

Servers can then present the Web site corresponding to the users’ preference.

Another feature related to automatic Web navigation is relative URL, which is

widely used in HTML documents. To access a Web page specified in relative URL,

the browser will combine the relative URL with the base URL specified in <Base>

tag or the URL of previous page to produce a complete URL.

1.2.2 Web Site Navigation Problem

Web information integration problem is different from information integration with

databases because of the nature of Web structures. Data are contained in interlinked

Web pages, that is, a web, rather than well-defined relations in database systems. Most

of previous Web information integration systems such as Ariadne [1][2][15] simply

model a Web page as a data source relation and ignore the necessity of navigation

between Web pages. They did not capture the relationships between the linked data

and Web pages and assumes that all Web pages can be obtained with a single HTTP

request. The other Web information integrator called ShopBot [9] did not address this

problem explicitly.

Web navigation mechanism is designed based on interactivity between human

users and Web servers. Human users interact with Web servers by actions such as

requesting a URL via locating the input text area, filling query string to a query form

and clicking a button, etc.

As we discussed in the last section, to fetch a Web page from the Web server

requires many kinds of interaction with the server. Request a Web page pointed by

certain URL via get method is only the most basic one. In addition to URL’s, other

information such as base URL, CGI parameters, cookie object, user ID/password, etc,

may be required. Because these values may only be obtainable from a sequence of

Web accesses with the Web server, to specify these parameters with constant values in

advance cannot solve the problem.

For example, considering a news site providing hourly-update news, links on their

news index page to the detailed story page change every hour. Obviously, these

detailed stories cannot be obtained via constant URL’s. A more promising way is to

fetch the index page, extract the detailed-story links, and obtain detailed story pages

by following these links. In this example, the index page is an intermediate page that

8

does not make sense to the application. In an extreme case, visiting many intermediate

pages may be required to obtain the target information. For example, some pages are

necessary only for obtaining a cookie object to continue the navigation, and another

pages only for obtaining the user session ID or triggering a user session ID

mechanism inside the Web server. There are other examples that also prove the

necessity of navigating Web pages to obtain target information. For example, the

“next pages” of query results from a search engine. Links to those next pages are

necessarily generated during run-time.

These examples all shows that modeling each page as a source and then each

source can be accessed with a set of preset parameters is incorrect and not appropriate

in wrapping Web information sources. Moreover, the Web is an unreliable

information source. The quality of service of the Web varies with time and may be

down.

In addition to the problems listed above. HTML itself is another source of

problems in Web wrapper construction. The rapid growth of the World Wide Web

comes from several reasons. Two important ones among all of them are the simplicity

and loose specification of HTML. Even an amateur that has no experience in

computer programming can learn how to use HTML to structure and style his/her

documents in a very short time. However, from the view of a software agent developer,

this property of HTML may cause problems. Illy-written HTML documents by

unskilled HTML programmers are everywhere on the Web. Commercial browsers are

laboriously programmed to tolerate these “invalid” HTML documents so that they can

render them without causing fatal problems. But these documents did cause serious

problems for Web agent developers.

Another problem comes from the limited restriction on syntax of HTML. For

example, some end tags can be missing while other tags have no end tags. Ambiguity

may arise in determining the scope of those tags. Besides, HTML documents are not

agent-friendly because HTML tags reveal layout information only and cannot present

sufficient semantic meaning. As a result, numerous data extraction techniques were

developed to conquer this problem.

9

1.2.3 Data Extraction Problem

In the last section, we mentioned that navigation on the Web requires information

extracted from Web pages during run-time. Data extraction problem is thus how can

we fetch the target data from a Web page. Web pages are composed for human readers

and are formatted in free texts. Hence, Web pages usually do not have a structured

data format like a table in a relational database. Therefore, extracting data from Web

pages is not so direct as selecting a row from a relational database.

Due to the daily increasing amount and format changing frequency of Web pages,

it will be very tedious, time-consuming, and error-prone to use hand-coded programs

for extracting data from Web pages. It is necessary to generate a Web page extractor

automatically or semi-automatically. Several systems addressing this wrapper

induction problem are initiated, for example, the works of Muslea [19], Kushmerick

[16], and Hsu [11][12]. These works use machine-learning techniques to produce Web

page data extractors with human labeled training examples. Instead of the methods

taken by earlier work which need heavy domain specific and linguistic knowledge, the

more recent research like the three listed above take advantage of the regularity of

semi-structured1 Web pages.

Online data sources frequently use tables or itemed lists to organize representation

of their data, moreover, many of these pages are in fact generated by computer

programs with data come from certain database(s). Hence, these data pages usually

have some kind of regularity. Unlike normal plain text files, Web pages come with

useful additional information such as tags for formatting appearance of pages.

Therefore, Web page data extractors rely on regularity of the contents of data pages

can show their strength in extracting data from these pages with high success rate.

Our work equipped with SoftMealy [11][12] extractor of Hsu as our Web page

data extraction subsystem. Compared with previous works, SoftMealy addresses the

following problems that cannot be handled by the previous works to cover a larger

class of documents.

y Missing attributes

y Multiple attribute values

y Variant attribute permutations

y Exceptions and typos

1 A semi-structured page means the desired information contained in this page can be located using a
concise and formal grammar. This definition is found in [19].

10

1.2.5 Our Approach

To overcome the problems mentioned above and to provide a solution for automating

Web interactions, we propose our approach as the following description: We would

like to develop a configurable wrapper that wraps a set of Web pages rather than

wraps only one Web page. The main purpose is to leave the upper layer mediator from

handling the details of Web page locating and data extraction tasks. From the view of

mediator, it can treat the set of Web pages wrapped by this wrapper as a relation.

Whenever the structure of these pages changes, the mediator can be kept untouched if

the integrated meaning represented by these pages doesn’t change. To achieve these

requirements, we previously proposed Software Lego [13] system, which shares the

same architecture and basic ideas with the work that will be presented in this thesis.

The Software Lego executor executes a datalog[24]-like navigation plan. The plan

is a text file containing blocks of subplans. Each subplan is an execution unit and

constitutes a domain relation that is tailed with one or more source relations. The

domain relation represents a user query while a source relation represents the data

content of a Web source that is connected in this system. The attributes in a source

relation means what can be obtained from this source or what need to be sent to the

source to get values of the other attributes back. A set of system built-in functions was

defined for arithmetic operations and string operations. Each attribute name in a

relation has a global scope. Source relations are executed as the order listed in the

subplan. URL and variable value bindings for CGI parameters and extracted data of

each source are explicitly specified in a separated source configuration file.

author_query(Detail, Title, Author, Format, Date, NT_Price) :-

amazon_author(Title_Keyword, Detail, Title, Author, Format, Date,

US_Price) &

currency_table("TWD Taiwan Dollars", "USD", Value) &

MULTIPLY(Value, US_Price, NT_Price).

Code 1. An Example Subplan for Software Lego Executor

In the example shown in Code 1, we assume that two information sources are

connected in this system. One is a bookstore source named amazon_author, and

currency_table is a Web site that provides information of exchange rate. In this

example, source relation amazon_author means the data obtained by querying

about authors through a CGI form. In this subplan, Title_Keyword is a variable

that must be bound prior to the execution. Executor first queries the CGI form with

11

bound value of Title_Keyword. And then it gets values of the following variables:

Detail, Title, Author, Format, Date, US_Price from the output pages

for the value of Title_Keyword. After that, Executor gets the exchange rate

between U.S. dollars and New Taiwan dollars from the source, currency_table

by sending "TWD Taiwan Dollars" as a query to that source. Then Executor calculates

NTD prices of each result data from exchange rate and USD prices. Finally it returns

rows of data with following attributes: Detail, Title, Author, Format,

Date, NT_Price.

Software Lego can visit a sequence of Web pages, extract data from these pages,

use obtained data in further navigation, traverse next pages, join and project obtained

data into a target data schema. However, it has some drawbacks. To address these

problems, we developed a new version of our system. We defined an XML

(eXtensible Markup Language [26])-based language, WNDL (Web Navigation

Description Language), which will be introduced in the next chapter. WNDL has

intuitive expressions in Web concepts and can represent complex Web client/server

interactions. A WNDL executor was then implemented. When compared to Software

Lego, the WNDL wrapper has the following benefits.

1. XML format configuration file rather than specific format can ease information

interchange between applications.

2. More flexible variable value system. All variable names are global in Software

Lego thus the same source relation cannot be executed twice. This seriously

limits the expressiveness of navigation plans of Software Lego.

3. Recursive evaluations in plan execution.

4. More robust and reliable “next pages” handling.

5. Simplified and unified configuration file. Software Lego executor requires six

different kinds of configuration files. Now all required information could be

stored in only one configuration file with unified look and feel. This makes the

system maintenance easier.

12

To sum up, the combination of the executor and the definition of WNDL can offer

the following features:

y Visit a sequence of Web pages and accumulate data extracted from these

pages.

y Insulate the upper layer application from changes in the page structure of the

connected Web site and changes of the formats of documents.

y Insulate developers from concerning HTTP and HTML pages handling.

y Declaratively represent complex navigation and data evaluation on Web.

y Handle dynamically generated static links and CGI query HTML forms.

y Generate Web pages from values obtained during processing.

y Handle user session problem.

y Automatically determine the end of multiple next pages.

y Automatically handle base URL assignment when relative URL’s are used in

Web pages.

y Tolerant to many mal-formed HTML documents.

The features listed above plus the data extraction power offered by SoftMealy

extractor, the WNDL solution is expected to cover a large percentage of Web pages

and Web sites. Moreover, WNDL and its executor can not only serve as a wrapper in a

Web information integration system, but also can be used in various applications like:

y Customizable Web crawler.

y Information gathering robot.

y Web site links validating robot.

y Comparison-shopping bot.

y Meta-search engine.

y Meta-newspaper.

And many other applications that can be benefited from automated Web access.

13

1.3 Organization of this Thesis

This thesis is primarily discussing the automation of information gathering on the

Web. Chapter 2 presents the meta-language, WNDL defined for describing Web

navigation behaviors to facilitate the automation. It is followed by Chapter 3 that

explains the evaluation procedure of WNDL and the implementation of the whole

system. In Chapter 4, we will evaluate WNDL in terms of expressiveness and utility

by experiments. Several related work will then be introduced in Chapter 5. Finally,

Chapter 6 summarizes the whole contents and discusses critiques and possible future

works.

14

15

Chapter 2

Web Navigation Description
Language (WNDL)

2.1 Preliminary

The language, WNDL (Web Navigation Description Language) is an XML-based

(eXtensible Markup Language [26]) language for describing navigations for Web

information gathering tasks. WNDL is the first part of our solution to automate

information locating, extraction, and integration on Web. A WNDL script describes

how the data is stored in target Web sites, how to get them and how to bind the values.

Then the executor of WNDL will interpret the instructions in the script to complete

the task and return the result. Currently, human writers are required to compose

WNDL scripts. In the future, we plan to develop techniques to automate WNDL

scripts generation.

WNDL is an application of XML. A set of XML elements is defined. The

combination of XML and a WNDL executor implemented in Java introduced in the

next chapter makes this solution platform independent. Information agents like

comparison-shopping robot can be built easily and rapidly on nearly all-existing

computer platforms. The Web site configuration files can also be interchanged

between heterogeneous hosts.

16

In an information integration system, wrappers are specialized to each connected

information source type. These wrappers provide a uniform interface for the

information sources to the mediator. We assume that the data can be represented in

relational data model. That is, the data is modeled as a set of relations (tables) with a

fixed number of attributes, and each attribute has no more than one value. Our

wrapper makes Web pages look like a data table from the view of the mediator and

insulates the mediator from handling the details of Web navigation. Besides, we also

assume that all attributes are in string type.

WNDL is capable of describing:

y how to locate data in a logical Web site;

y the contents in target pages;

y how to extract target data from each page;

y the information required in obtaining each page in the set via following a static

link or a form query that can be dynamically generated;

y combining the data coming from each page data set into the target data set.

2.1.1 A Brief Introduction to XML

XML is a markup language for describing information. It provides a framework for

creating new markup languages. The predecessor of XML is SGML (Standard

Generalized Markup Language), which is also the predecessor of HTML. Different

from HTML, XML does not have a predefined fixed set of tags. XML allows the

developers to define their own set of tags or use the one defined by others. Unlike

HTML, XML is not only for formulating the rendering of documents with tags, but

also simplifies the transformation of information among XML documents. Therefore,

the emergence of XML indeed supplements the drawbacks of HTML in the aspect of

data interchanging.

The most attractive aspect of XML is that it allows XML designers to define their

own tags. With this capability, semantic meaning can now be attached on the tags

though the interpretations are left to XML processors. With the flexibility, XML is not

only a new format of Web pages, but also a container of data and control instructions.

For example, considering an on-line book shopping application. The current way for

representing a record of book in HTML may look like the following code:

17

<Table>

<TR>

<TD>Title</TD>

<TD>Java Network Programming</TD>

</TR>

<TR>

<TD>Author</TD>

<TD>Elliotte Rusty Harnold</TD>

</TR>

</Table>

In contrast, if we represent the same data in an XML-based language, it may look

like the follows:

<BookRecord>

<Title>Java Network Programming</Title>

<Author>Elliotte Rusty Harnold</Author>

</BookRecord>

In the HTML version, tags only show how the data will be rendered in the

browser window, not the meaning of the data. This makes the use of HTML

documents by a computer program difficult. On the other hand, the XML version

makes processing of this document by a computer program easier because the

program can infer the meaning based on the tags. (<Title>, <Author>, etc)

XML itself comes without any predefined tags. It leaves services such as display

control and hypertext linking to subsidiary languages. For example, XML leaves

display control to style sheet languages such as XSL (eXtensible Stylesheet Language)

and CSS (Cascading Style Sheets), and hyper links to XLink [28] (XML Linking

Language).

XML allows developers to define their own document structure with document

definition languages such as DTD (Document Type Definitions). With DTD, XML

can strictly constraint document structure. Whether an element is required and where

it should be can be defined. For example, XML can enforce a documents type of book

data to have title, author’s name, publisher’s name, and its ISBN code. The order and

containing relationship can be defined, too. Continuing the example, books that relate

to programming languages can be defined to be in the computer science category.

18

Primary building blocks of XML documents are elements with attributes and

contents. Elements are formed with the application of tags. For example, as the

following XML code indicates,

<BookRecord isbn=”0-13-960162-7”>

<Title main=”XML by Example”

subtitle=”Building E-Commerce Applications”/>

<Author name=”Sean McGrath”/>

</BookRecord>

there are four tags in this code segment, <BookRecord>, <Title>, <Author>,

and </BookRecord>. They represent three elements, BookRecord, Title, and

Author. BookRecord element has the contents, Title and Author. And these elements

have their own attributes such as: isbn, main, subtitle, and name.

2.1.2 Term Definitions

The following terms are used frequently in the whole context with special

meaning. Although the terminologies used in this text are primarily based on a

working draft, “Web Characterization Terminology & Definitions Sheet” [27], from

the World Wide Web Consortium (W3C). We reused some of these terms and

endowed them with another meanings. Their specific meanings to this context are

defined as below.

Definition 1 (Logical Web Site) A cluster of Web pages that are related to each other,

each page contains certain amount of data. The data distributed among these pages

can be integrated together and have a logical meaning.

Definition 2. (Episode) A sequence of related Web requests for information gathering

that could fulfill the need of certain purpose.

For example, a Web user wants to know what books related to a keyword, “Java”,

are sold in the on-line bookstore, amazon.com. To fulfill this need, he first connects to

the homepage of amazon.com, finds out the book search page, inputs the term, “Java”,

in the form text area, presses the “Go” button and gets search result page(s). In this

episode, at least three Web requests are sent. If the Web user wants to get the full list

of the books match the keyword, he may click the “More Results” button on the

search result page(s). All of these Web requests are related and constitute an episode.

19

Definition 3. (Session) (User) Session is a higher-level container of multiple discrete

episodes and operations using the collected information as operands.

To finish a complete Web information-gathering task, or to answer a user query

within an information integration system, sometimes multiple episodes are necessary.

Continuing the example in the definition of an episode, after getting the title list of the

books related to “Java” as well as the price list in U.S. Dollars from the first episode,

the Web user may then want to know the prices in New Taiwan Dollars so that he/she

can determine which book to buy. Hence, he/she visits the Web site of Hwa-Nan bank,

after several clicks he/she can find the exchange rate between U.S. Dollars and New

Taiwan Dollars. This forms the second episode. At last, the user uses a calculator to

compute the prices in New Taiwan Dollars of the books that he/she is interested in

purchasing. In this example, there are two episodes and an additional operation,

multiplication. All of these steps constitute a User Session.

Definition 4. (Web Page Class) A set of Web pages that a (SoftMealy) extraction rule

can be applied to parse and extract their contents.

WNDL executor utilizes a SoftMealy data extractor to extract data from Web

pages. This extractor extracts data according to an extraction rule. A Web page class

means the set of pages that one extraction rule can be applied to. This usually denotes

Web pages generated by one single CGI program or Web pages with identical layout

format.

2.1.3 Organization of WNDL

The purpose of defining WNDL is to enable the automation of information

gathering procedure on the Web. WNDL is a set of XML elements. Each represents a

specific meaning, associated with a set of element attributes, and contains contents

elements. A valid WNDL document for a logical Web site consists of two primary

parts. The first part describes the page structure and the distribution of meaningful

data of this site. We call it Data Web Map (DWM). The second part is a block

containing the Navigation Programs for locating the desired data as well as the

relationship between the data.

20

2.2 Data Web Map (DWM)

The DWM part is the primary data container in WNDL documents. The information

stored here describes how to open target Web pages, and how to extract the data on

the obtained pages.

After inspecting normal Web browsing and information gathering activities, we

found the following modeling is quite reasonable and intuitive. WNDL models a

logical Web site (or a set of Web pages) as a directed graph. The objects contained in

the graph include nodes and uni-directed edges that connect nodes. Each node on this

graph represents one Web page class, and an edge represents a possible mean to reach

its destination node from its source node. Generally this includes following a static

link or querying a CGI program. For a given CGI program, there may be more than

one edge to represent different ways to query it. For example, we may have one edge

for query author, one for query book title for the CGI program of an on-line

bookstore.

In WNDL, the definitions of DWM objects are enclosed in the Map element.

Contents of the Map element include an Entrance element and one or more Node

elements. Contents of Entrance element are one or more Edge elements. The edges in

the Entrance element represent the way to access the logical Web site directly outside

the scope of the defined map without further interaction with the Web server.

Typically, this leads to front page of a Web site. For example, the page you can get via

the URL’s, “http://www.yahoo.com”, “http://www.altavista.com”, etc.

In the following sections, we will go through a complete example for modeling

the behavior of querying books on the site of well-known on-line merchant

amazon.com. In this sample model, we are interested in two Web page classes among

all of the documents from amazon.com. We model the procedure to send a keyword

for querying books against amazon.com’s search engine. The resulting DWM has two

nodes and three edges as Figure 2 depicts.

21

Figure 2. Web page structure of amazon.com in DWM representation

2.2.1 Data Web Map Node

A node represents one page class in the described logical Web site. Defined again here,

a page class is the set of Web pages that one single extraction rule can be successfully

applied to. A Web page class may contain an arbitrary number of Web pages when the

class represents pages that are generated by a CGI program. Obviously, the number of

Web pages that a CGI program can generate is innumerable. For example, considering

a query program in a search engine like Yahoo!. Virtually any kind of query string can

be placed for the processing of that program. The page(s) it returns is determined not

only by the query string but also by the time when the query is placed.

In our model, each node is also considered as a container of data that can be found

in the pages belong to corresponding Web page class. The data in a node is

represented as a relation in the evaluation procedure taken by the executor. It is a table

associated with a schema, which is an attribute name list of the target data that will be

extracted from pages of that page class. Each attribute has an option for HTML tags

filtering. This determines the behavior of a built-in HTML tag filterer of data extractor.

Three modes are available:

1. Keep all HTML tags.

2. Keep no HTML tags at all.

3. Filter out all HTML tags but keep the value of HREF attribute of <A> tags.

HTML tag filtering is necessary because a lot of redundant HTML tags exist in

Web pages for formatting purpose only, for example
 for new line, for

displaying an image, etc. These tags interfere with real data and are better to be

filtered out to make better use of real data. On the other hand, HTML links play

important role in Web navigation, so the default behavior of our extractor is to keep

1

2
3

A

B

22

the URL content of links and filter out all tags. Each attribute can be set separately

with respect to this option.

Another essential element of a DWM node is the ExtractRule element. The

content of this element is raw text of the extractor’s extraction rule for this node. An

external file can also be specified as the File attribute of this element. When the two

both present, rule specified in the content will be used.

At last, Node element also has a key element, Edge, as its contents. Edges that are

contained in a node mean these edges start from this node and link this node to

another node.

There are two nodes in the example model as showed in Figure 2. Node A denotes

the front page of amazon.com, and node B denotes query result pages returned from

query answering program of amazon.com. (Edge elements are removed for

abbreviation purpose.)

<Node Name="A">

<Schema>

<Attr Name="form" TagFilter="KeepAll"/>

</Schema>

<ExtractRule File="amazon_home_rule.txt"/>

</Node>

<Node Name="B">

<Schema>

<Attr Name="title"/>

<Attr Name="author"/>

<Attr Name="year"/>

<Attr Name="price"/>

<Attr Name="url_next"/>

</Schema>

<ExtractRule File="amazon_rule.txt"/>

</Node>

Code 2. Nodes in DWM specification of amazon.com

In node A, the information we are interested is the <Form> HTML tag block in

this page. It is the only data that will be extracted from this page. This attribute is

named as form in this example. Some Web sites use user session id mechanism to

23

recognize HTTP requests from identical user to keep track of a user session. This

helps Web servers to determine the contents of Web pages they should response

according to each user. User session id is usually implemented by the following

mechanism: When a user first connect one of this sort of Web site, the front page

returned by the Web server is in fact generated by a program, it assigns an id

embedded in this Web page every time. When the user clicks links, query forms, and

other interaction actions within this Web site, the assigned user session id will be

carried with this server session. In some Web sites, HTTP clients need this id to

continue navigation. Some Web sites optionally use this id. Although amazon.com

belongs to the later category, we demonstrate the use of dynamically generated HTML

form text here. Because the query form text is extracted during run time, we can

obtain the user session id information that is generated dynamically.

Node B represents the query result returned by amazon.com’s search engine, the

information we are interested include title, author, year, price, and a segment of

HTML text (may be a static link or a query form) that links to the next page of the

query result. Multiple result pages can be handled by WNDL executor during run-time

with several heuristic rules. The detailed mechanism will be explained in the next

chapter. Next pages will be fetched and the data will be extracted automatically during

the evaluation process of WNDL document to make all data appearing to contain in a

table of a relational database.

2.2.2 Data Web Map Edge

An Edge in a DWM represents a possible mean to obtain a page that belongs to a Web

page class denoted by the destination node of this edge. DWM edges serve as

containers of the necessary information of actual HTTP requests. Purpose of this part

of WNDL is very close to another Web interface definition language, WIDL (Web

Interface Definition Language) [25], that is, to define a HTTP session to automate

Web accesses.

DWM edge can be used to represent the interfaces for both static HTML

documents and dynamically generated HTML documents. This interface is defined by

a set of parameters. Values of these parameters can be either constants or variables

with run-time generated values.

24

<!-- This is an entrance edge. -->

<Edge ID="1" Type="Static" Method=”Get” Dest="A"

URL="http://www.amazon.com"/>

<!-- This is an edge within node A -->

<Edge ID="2" URL="$query" Method="Post" Type="Dynamic" Dest="B">

<EdgeInput>

<EdgeParam Name="query"/>

<EdgeParam Name="keyword"/>

</EdgeInput>

<Query>

<QueryParam FormInput="index" Value="books"/>

<QueryParam FormInput=”Go” Value=”Go”/>

<QueryParam FormInput="field-keywords" Value="$keyword"/>

</Query>

</Edge>

<!-- This is an edge within node B -->

<Edge ID="3" URL="$next" Dest="B">

<EdgeInput>

<EdgeParam Name="next"/>

</EdgeInput>

</Edge>

Code 3. Edges in WNDL specification of amazon.com

Edge 1 is an entrance edge of this map. It opens the front page of the target Web

site. In this case, it is the destination node of edge 1, node A. The action of edge 1

takes is quite trivial. Let’s examine the more complex edge 2. In some sense, WNDL

can be considered as another programming language with a specific interpreter, and

edges can be viewed as subroutine definitions in WNDL programs. An

<EdgeInput> block can be found in the definition of edge 2 and means to invoke

the operation of edge 2. Values of two variables are required, query and keyword.

So the EdgeInput element is actually a local variable declaration block, and two

variables are declared here. The value of URL attribute of edge 2 is a variable,

“$query”. It is a variable reference1 in WNDL. This means the URL of this HTTP

1 In the cases of constant values with dollar sign prefixes, they are required to be escaped by
duplicating the number of prefixing dollar sign. Hence, values with odd number prefixing dollar sign(s)
are variable references and values with even number prefixing dollar signs are constant values.

25

interface is a variable and will be bound during run-time. In WNDL, HTML forms are

treated as a parameterized URL, which will be explained later. URL of edge 2 in this

example is the form text extracted from node A. Because this edge represents a query

to a CGI program via a form, its type is Dynamic, in contrast to Static type of

edge 1.

The other noticeable block of edge 2 is the Query element. In this example, this

means to query amazon.com, at least three parameters are required to be set. There

may be some form parameters in hidden input type with constant values. In this

example, since the whole form text will be extracted, these hidden constants can be

found in the form text, it is not necessary to set them. The three input parameters

field-keywords, Go, and index in this case are chosen by human Web users.

This code segment means when the HTTP request following edge 2 is issued during

run-time, field-keywords will be bound to a WNDL local variable, keyword,

which is the query string to this CGI from. Parameter index is bound to a constant

value, “books”. When a human Web user browses this page, this value is specified by

manually selecting an entry from the pull down menu. By inspecting HTML source of

that page, we can find out the value of that parameter for querying books is “books”.

Similarly, the parameter Go is bound to value “Go”. In this example, the human users

fill the query string, and choose the query category. At last when the user wants to

issue the query, he/she clicks the “Go” image button. Form parameter Go will be

bound to “Go” at that time.

Let us turn to edge 3. Edge 3 is an edge that has identical source and destination

node just depicted in Figure 2. Therefore, it is a self-looping edge. Like edge 2, edge 3

also has a URL as a variable that refers to the link underlying “More Results” image

button that is in node B. During run-time, node B will form a self-loop. We call how to

access pages requring iterations and how to terminate the iteration as the “next-page

problem”. As described above, next-page problem can be handled by WNDL.

The other element available as the contents of Edge element is the Timeout

element. It contains the control information of timeout event handling. Because Web

sites may not always available and network traffic may be jammed, to prevent infinite

waiting of network connection, controlling timeout event is necessary in networking

applications. In WNDL, number of retry attempts and time interval between each

attempt can be specified. This time interval is equal to the time bound of timeout

event. If all attempts fail, the executor will throw an exception signal to its invocator.

26

2.3 Navigation Program

Navigation program part of a WNDL script specifies the programs (or plans) to

navigate the DWM described in the same document. It works like a computer

program that utilizes the predefined DWM objects. WNDL navigation programs are

made to represent sequences of HTTP requests that constitute particular Web

information-gathering tasks. The sequence can be considered as paths on a defined

DWM.

In WNDL, a <Program> block encloses navigation programs. Primary elements

contained in the Program element are Session, Episode, Loop, and Request. WNDL

navigation programs are divided into several hierarchies. The atomic operation is an

individual HTTP request. A Request element that represents a HTTP request is the

atomic operation in WNDL. Session, Episode, and Loop are higher-level logical

structures of Request’s.

2.3.1 WNDL Session

A Session element represents a user session, which is the highest-level structure in

Navigation Program. Each session represents a unit of the execution of a WNDL

specification and has a set of session level variables. These variables are required to

be declared first before they can be use. They are value holders during the whole

process of execution. Therefore, they can be considered as global variables. Value

substitution of these session level variables is the core part of WNDL document

evaluation and execution process that will be explained in the next chapter.

A Session element contains two parts: a variable declaration part (VarDeclr) and

an actual Web navigation operation description part (Access). In VarDeclr element,

the content is a list of session level variable declarations (SessionVar). Each

variable’s type and label are defined in SessionVar. Four session level variable types

are available.

In The value will be given at run-time before the execution of this session.

Out This variable will be presented as a column at the final result data set.

InOut This variable is both an In and an Out.

Tmp This variable will be used in the following navigation program, but it is neither

an In nor an Out.

27

The output of a WNDL execution is a relational table. The schema of this table is

the session variables with type Out or InOut. Label is an attribute of SessionVar for

renaming the column names at last. Constants that will be used in the program are

also need to be declared here with an additional Value attribute. If this attribute

presents, this variable will serve as a constant in the following evaluation process with

the value given by the value of Value attribute.

Multiple user sessions can be defined in a single WNDL document. They are

totally independent to each other but use the same definition of Data Web Map. All of

them are contained in a Program element in a WNDL document. In each execution of

this document, one user session is selected and executed by the calling program.

<VarDeclr>

<SessionVar Name="X" Type="Tmp"/>

<SessionVar Name="Y" Type="Tmp" Label="Query String"/>

<SessionVar Name="Z1" Type="Out" Label="Title"/>

<SessionVar Name="Z2" Type="Out" Label="Author"/>

<SessionVar Name="Z3" Type="Out" Label="Date"/>

<SessionVar Name="Z4" Type="Out" Label="Price"/>

<SessionVar Name="Z5" Type="Tmp"/>

</VarDeclr>

Code 4. <VarDeclr> block in a Session

2.3.2 WNDL Request

WNDL requests represent HTTP requests. In WNDL, this means to follow an edge on

DWM, enter into a node and fetch data from that node. The execution of a WNDL

program can be conceptually considered as traversing across a finite number of

program states, which correspond to the nodes where the program position indicator is

pointing.

Figure 3. Execution of a WNDL request

Program position indicator

Request

28

Executing a request means a transaction of a node. In addition to specifying

which edge to follow, the value binding relationships between local variables of

DWM nodes and edges and global variables defined in session level are also required.

The following code segment shows a request following edge 2 in Figure 2.

<Request Edge="2">

<VarBind Name="query" Type="Edge" Value="$X"/>

<VarBind Name="author_name" Type="Edge" Value="$Y"/>

<VarBind Name="title" Type="Node" Value="$Z1"/>

<VarBind Name="author" Type="Node" Value="$Z2"/>

<VarBind Name="year" Type="Node" Value="$Z3"/>

<VarBind Name="price" Type="Node" Value="$Z4"/>

<VarBind Name="url_next" Type="Node" Value="$Z5"/>

</Request>

Code 5. Example of Request element

The Edge attribute of Request element indicates which edge will be followed in

this step. Inside the Request element are all VarBind elements. Each VariBind element

represents a variable binding. Two types of variable bindings are available: edge

variable bindings and node variable bindings. As illustrated by Figure 2, Code 2, and

Code 3. Code 5 represents a state transition from node A to node B. That is, to send a

CGI query HTTP request to the Web server via the setting in edge 2 and to obtain

pages belong to the page class represented by node B. By inspecting Code 2 and Code

3, the local variables contained in edge 2 are query and author_name, and the

variables belong to node B are title, author, year, price, and url_next.

Those are the variables need to be bound in this request. They are specified to be

bound to X, Y, Z1, Z2, Z3, Z4, and Z5 respectively when the request is being

executed. But the direction of value binding is different between these two kinds of

variable binding. Before execution of this request, session variables X and Y are

supposed to already have some valid value tuples. These valid value tuples will be

bound to edge 2 local variables according to the specification in edge 2’s definition

block. Then a sequence of corresponding HTTP requests will be sent to obtain node B

pages. After these edges are fetched, the extractor rule(s) specified in node B’s

definition block will be applied to these pages and data will be extracted from these

pages according to the applied rule(s). A data table representing these data will be

generated. The initial schema of that table is the one declared in the Schema element

of node B. The data will then be bound to session variables as the specification that

can be found in Code 4. These data will be propagated to following execution.

29

2.3.3 WNDL Loop

Loop is a higher-level logical structure than requests. It represents looping Web

navigations. An example of looping behavior during practical Web browsing is

clicking the next page on the result pages returned by a search engine. The pages

returned by a search engine usually constitute a Web page class. That is, a node on the

DWM. Following next page links is actually a self-loop on one single node. It is the

most frequently encountered loop structure in actual Web navigation.

<!-- The original position of this edge is within the block of node B -->

<Edge ID="3"

URL="$next"

Dest="B">

<EdgeInput>

<EdgeParam Name="next"/>

</EdgeInput>

</Edge>

<Loop Max="100">

<Request Edge="3">

<VarBind Name="next" Type="Edge" Value="$Z5"/>

</Request>

</Loop>

Code 6. Example of a self-looping edge

Continuing the amazon.com example, Code 6 represents the self-looping structure

of the query result. Edge 3 adjacent to node B is a self-looping edge that start from

node B and point back to node B itself. The sequence of HTTP requests is chained via

the information from variable next in edge 3 and the session variable, Z5. Recall

that the request code segment in Code 5, session variable Z5 is bound to node

variable url_next. url_next’s value is the URL underlying the “More Results”

image of amazon.com’s query result pages. This link is extracted from node B pages

and is bound to Z5 of result data set. When issuing HTTP requests following edge 3,

values of Z5 is bound to next in edge 3. Hence, a loop is formed. The termination of

iterations in a loop is automatically determined by several heuristic rules, which will

be explained in the next chapter. An upper bound of Loop iteration number can be

specified. This is particularly useful when we are only interested in the most recent

data. In that case, extracting all data from the returned pages is time-consuming and

unnecessary.

30

Though the most frequently used loop structure in practical Web navigation is to

handle next pages. The definition of loop within WNDL can be more general.

Multiple requests can exist in a single loop. Loop structure definition can even be

nested, that is, a loop can be defined within another loop. These more generic loop

structures can be defined and evaluated in WNDL, though these cases are rarely seen

in real Web sites.

Figure 4. Complex Loop Structure

Figure 4 shows a complex loop structure that can be represented by WNDL. An

example of this circumstance is: there is a CGI form in node A. Edge 2 is a CGI query.

Edge 5 connect node C to node A when data extracted from node C is then used to

query the CGI program contained in node A.

2.3.4 WNDL Episode

An episode in WNDL is a chain of HTTP requests. The representations of the visited

DWM objects by an episode are similar to the one shown in Figure 3. It is a path on

DWM starts with an entrance edge. An episode is represented by Episode element in

WNDL. The contents of an Episode are Request and Loop elements.

To complete the information-gathering task of a user session, multiple episodes

can be defined. They are basically chains of HTTP requests. They may or may not

have identical component objects. There is no limitation on the component DWM

objects between each episode. But they are supposed to form a complete logical unit

and produce a data set. Continuing the amazon.com example, the process of Figure 2

is a complete episode. There may be another episode defined in the same user session

integrally to complete an application. For example, in an on-line

comparison-shopping application, another episode for querying the same keywords to

BuyBooks.com, can be defined. The episodes share the same set of session variables.

�

�

� �

�

�

�

�

31

Then the results may look like this table:

Merchant Title Author Year Price

amazon.com Core Java 2, Volume 2:

Advanced Features

Cay S. Horstmann, Gary Cornell December 27,

1999

31.49

amazon.com Core Java 2 , Volume 1:

Fundamentals

Cay S. Horstmann, Gary Cornell December 15,

1998

30.09

BuyBooks.com Core Java 1.2; Vol. 2 Cornell, Gary & Cornell 1/1/2000 33.99

BuyBooks.com Core Java 1.2;

Fundamentals With

CDROM

Horstmann, Cay S. & Cornell, Gary

& Horstmann & Cornell

12/1/1998 32.99

Table 1. Queries to amazon.com and BuyBooks.com with book title, “Core Java”

WNDL not only allow independent episodes within one session but also allow

existence of dependency between episodes. Evaluation of one episode can rely on data

gathered from another episode(s). To achieve this, episode dependency can be

specified in Dependency sub-element of Episode element. A list of prerequisite

episode names is given there for dependency specification. Dependency between

episodes can be recursively defined in WNDL. For example, in Figure 5, episode E2,

E3, and E4 form a cycle. On the other hand, E1 has no prerequisite and is independent

to E2, E3, and E4.

Besides the dependency specification, HTTP authentication information can be

specified in Episode element if authentication is required. Some Web sites are not for

public access and require user ID/password pair to protect sensitive information inside

the Web site. A single pair of user ID/password authentication may protect more than

one class of Web pages. They are called “realms” in HTTP authentication

terminologies. Hence, the authentication information is supplied at episode level, not

request level. A separate episode can be defined so as to access a realm of

password-protected pages.

32

Figure 5. Dependency graph between episodes

2.4 Limitations and Issues

WNDL is designed based on some assumptions that may be violate in some cases.

WNDL assumes all target data can be extracted from fetched Web pages.

WNDL executor relies on a SoftMealy extractor to extract data from fetched Web

pages. Unfortunately, SoftMealy extractor has its limitation and certainly cannot

guarantee to achieve this. In some cases, multiple rules can be applied on the same

Web page to jointly produce data that cannot be extracted by one single extraction

pass. WNDL executor takes advantage of this trick to conquer the one-pass1 nature of

SoftMealy extractor. By using different extraction rule in each pass, and then

concatenating or joining the result from each result data set, we can make the output

data look like coming from a multiple-pass extractor.

In other cases, if the extractor fails to extract key information for execution to

continue, for example, a URL or a <Form> block, WNDL wrapper will fail to wrap

this site. WNDL executor expects that all required information such as parameter

values for CGI query could be extracted directly from Web pages. However, there are

cases where the extractor cannot achieve this because some values are determined

1 The current SoftMealy extractor scans the extracting document one pass only so that it cannot
produce overlapped data records.

Session S

Episode E1

Episode E3Episode E2

Episode E4

� : B depends on A�

33

outside the form block. For example, for pages with JavaScript functions to

dynamically generate the required parameter values. These values will be determined

after the execution of that function during run-time when certain event occurs such as

when the user clicks a button on the Web page. Without bundling a JavaScript

interpreter1, the current system cannot handle this case. Since the definition of WNDL

is not implementation dependent, it is not difficult to upgrade the whole system to a

more powerful extractor, for example, a next generation SoftMealy extractor or an

extracting subsystem with JavaScript interpreting capability.

WNDL assumes the values of the variables referring to the same real world object are

equal to each other.

The data contained in Table 1 exemplifies the inconsistency of string values

referring to the same real world object in practical applications. The same books have

different listed titles from those two information sources even though each book has

only one title printed on its cover. The style of publish date representation is also

different in these two Web sites. Moreover, the same book has two publish date in

these two Web sites.

Normalizing various representations of the same real world object to a canonical

form can solve the problem partially but not completely. As discussed in previous

work [6], “Determining if two name constants should be considered identical can

require detailed knowledge of the world, the purpose of the user’s query, or both.” In

that work, they proposed a mechanism using statistical information retrieval

techniques to explicitly measure the similarity between terms in information

integration domain and got impressive results. But the techniques they adopted are

only applicable to English documents and are not suitable for environments that are

full of documents in other languages.

In Soft Lego system, we experimentally adopted an immediate and direct way to

aid this problem. In addition to a configuration file, another file that specifies aliases

of terms can be optionally fed to the executor. Terms in an equivalent class defined in

that file will be treated as identical during the evaluation process if string comparison

operations are taken. However, we found that defining the various aliases of terms

found in pages belong to an application domain exhaustively is too tedious and

impractical for larger domains with a large amount of term inconsistencies. So we

remove this feature in the current version. Handling this problem is by itself a difficult

1 Or interpreters for other script languages that can be used in Web pages, such as VBScript.

34

research topic. We decide not to address this problem in this thesis. Handling process

is left to the upper layer application that calls our system.

WNDL assumes that each data cell has at most one value.

In some cases, multiple values appeared in one data cell. Consider the book data

in Table 1 again. These books have multiple authors. Though the current extracting

subsystem is capable for identifying multi-value attributes and extracting them, when

the value of a cell is no longer a string and become a set of strings, these values can

have many kinds of relationship between each other. Hence, comparison between

multi-value attributes is very ambiguous. We decide to assume that every attribute

have at most one value and keep the system works as a relation evaluation system.

When multi-value is necessary, defining additional attributes may be required.

WNDL may not be naturally extended to fully support XML.

The number of XML documents is believed to increase gradually in the future.

Although when we designed our system, we focused on Web navigations with HTML

documents, our system can still cover part of XML documents with a replaced data

extractor. However, adapting our system to include the capability of fully processing

XML documents may require substantial modification.

First of all, XML documents have a tree-structured data model that may not be

expressed in relational data model that we adopted, as the above point indicated.

Second, links in XML document has larger freedom than HTML links. XML allows

its users to define their own tags. Therefore, any kind of linking element may be

defined. Interpretation of these linking elements is left to the processors of these

XML-based languages. Hence, navigation of XML documents cannot be totally

generalized. We can only extend our system to include the processing of generally

acknowledged standards such as XLink [28], which is suggested by W3C.

However, XLink links can be bi-directional, involve multiple resources, other

complex links can also be created. The current one-pass WNDL executor cannot

handle these cases. The relationships between multiple involved documents cannot be

specified by WNDL. As a result, the processing of XLink links does not conform to

the evaluation of WNDL programs and cannot be incorporated into our system

naturally.

35

Chapter 3

WNDL Executor Implementation

3.1 Architecture and Implementation of WNDL Executor

The same as Software Lego executor discussed previously, a WNDL wrapper is

composed of three subsystems: executor kernel, SoftMealy extractor, and page fetcher.

Figure 6 shows the relationship between them and the order of execution steps.

Figure 6. WNDL Executor Architecture

WNDL Executor Kernel

SoftMealy Extractor Page Fetcher

�
��������

World Wide Web
Web Pages

HTTP Requests

HTTP Parameters
W

eb
Pag

es
an

d Rules

Data

WNDL Wrapper

Application
Prior and

Post
Processor

WNDL
Document

1

9

8 4

5

6

7

Extractor
Rule

23

10
11

36

Every WNDL wrapper takes a WNDL document as a configuration file to wrap a

logical Web site. This file defines the behavior of this wrapper. The executor handles

data flows in this system and evaluates relations of data according to the algorithms

listed in the next section. During the execution, it reads static information and variable

binding information specified in the configuration file to complete HTTP requests.

The page fetcher abstracts HTTP connections to higher level interfaces to the

executor. The page fetcher can handle HTML and HTTP features including form

element parsing, get and post HTTP connections, cookies, timeout, HTTP

authentication and mal-formed URL handling. The page fetcher transforms the

parameters received from the executor to low level, executable HTTP requests. After

actually obtaining a Web page from a target Web server, it sends this page back to the

executor directly.

After obtaining a Web page, the executor will feed this page and the

corresponding extraction rule to the extractor for data extraction. One page may go

through this process multiple times if there are more than one extraction rule required

for this page. Extracted data will be returned to the executor for further processing.

The other noticeable block in Figure 6 is an optional prior and post processor

block. WNDL executor is a general-purpose wrapper and does not take operations

specific to data from one information source. In cases when the upper layer

application accesses Web with more than one WNDL wrappers, it may be necessary to

insert a piece of code between WNDL wrappers and the application. This processor is

responsible to transform queries from application to the form appropriate to the

specific source and perform post processing over the data into a canonical form to fit

the need of the application.

Our system is implemented in Java language as a class library. An API is defined

to maximize its utility. A set of exceptions is defined and leaves most of exception

handling task to be determined by the application. In our implementation, we take

advantage of the following Java packages: Java 2 SDK [22] as the basic Java

development kit, JAXP [21] for XML parsing, HTTPClient [23] for HTTP connection,

and HTMLStreamTokenizer [3] in HTML form processing.

37

3.2 WNDL Program Evaluation Procedure

3.2.1 A Brief Introduction to Datalog

The evaluation procedure of WNDL programs is closely related to datalog [24]

evaluation procedure. We present a brief introduction to datalog here. Datalog is a

version of Prolog that is suitable for database systems. It differs from Prolog with the

following two respects.

y Datalog allows only variables and constants as arguments of predicates and

does not allow function symbols as arguments.

y Viewpoint to meaning of predicates in datalog is different to Prolog and in

some cases it deviates from that in Prolog.

Datalog programs are composed of atomic formulas that are predicate symbols

with a list of arguments. For example: P(A1, A2,…, An) where P is the predicate

symbol. Every attribute Ai can be either a variable or a constant. Each predicate

denotes a relation. Arithmetic comparison predicates such as >, <, and so on, can also

be used to construct atomic formulas, they are called built-in predicates in datalog

context. A predicate whose relation is stored in a database is called an extensional

database (EDB) relation; the one defined by logical rules is called an intentional

database (IDB) relation.

A literal is an atomic formula or a negated atomic formula. A clause is a logical

OR of literals. A Horn clause is a clause with at most one positive literal. Hence, a

Horn clause is in one of the three cases.

y fact – a single positive literal

y integrity constraint – negative literal(s) without positive literal

y rule – a positive literal with one or more negative literal1

1 Horn clauses in this category are logically equivalent to logical implication with one positive literal
as the antecedent.

38

A datalog program is a collection of rules. In datalog, rules are written in Prolog

style such as this example datalog program.

Chain(X, Y) :- Link(X, Y).

Chain(X, Z) :- Chain(X, Y) & Chain(Y, Z).

Code 7. An Example Datalog Program

In this short example datalog program, there is an IDB relation, Chain, and an

EDB relation, Link. Predicate at left hand side of the “if” symbol, “:-“, in a rule is

called the head of that rule, and predicates at the right hand side of a rule is called the

body of that rule. In datalog, head is the logical consequence of body and each atomic

formula in body is called as a subgoal. The dependency relationship between

predicates can be depicted by dependency graphs.

Figure 7. Dependency graph of the predicates in Code 7

When cycles exist in dependency graph, the involved predicates are recursive. In

the example above, Chain is such a recursive predicate. Recursion is the main

strength of datalog over other languages. Suppose we have an EDB with the following

contents. {(A, B), (B, C), (C, D), (E, F)} Via the program in Code 7 and several

iterations of evaluation, we can finally obtain the conclusion that Chain(A, D)

holds.

Consider computing a datalog program with EDB relations R1, R2, …, Rk and IDB

relations P1, P2, …, Pm. For each i, 1 ≤ i ≤ m, the set of provable facts for predicate pi

that corresponds to IDB relation Pi can be expressed by this assignment.

Pi := Eval(pi, R1, …, Rk, P1, …, Pm)

In this assignment, Eval is the union of the evaluation result from each rule with

predicate pi as head. Then there is an immediate algorithm that solves recursive

datalog programs.

�����

����

39

begin

for i = 1 to m

Pi := Ø;

end of for

do

for i = 1 to m

Qi := Pi; // save values of Pi

end of for

for i = 1 to m

Pi := Eval(pi, R1,…, Rk, Q1,…, Qm);

end of for

while Pi != Qi for all i, 1 ≤ i ≤ m

return Pi’s;

end

Algorithm 1. Simple evaluation algorithm of datalog

This algorithm considers all tuples of all relations in all iterations and is obviously

inefficient. It can be proved that newly generated tuples during each iteration only

depend on the tuples that were generated in last iteration [24]. The following

algorithm incrementally evaluates a datalog program and is more efficient than the

previous one. In this algorithm, EvalIncr generates tuples in this way: when

evaluating each rule with Pi as head, the evaluation will run in a loop with m iterations.

In each iteration, one full relation is replaced by an incremental relation ∆Qj.

begin

for i = 1 to m

∆Pi := Eval(pi, R1, …, Rk, Ø, …, Ø);// the same as the one in

Pi := ∆Pi; // Algorithm 1.

end of for

while ∆pi � Ø for all i

for i := 1 to m

∆Qi := ∆pi;
end of for

for i := 1 to m

∆pi := EvalIncr(Pi, R1, …, Rk, P1, …, Pm, ∆Q1, …, ∆Qm);

∆Pi := ∆Pi - Pi;

end of for

for i := 1 to m

40

Pi := Pi � ∆Pi;

end of while

return Pi’s;

end

Algorithm 2. An algorithm that incrementally evaluates datalog programs

These two algorithms work rely on two assumptions.

1. EDB relations are constants. That is, contents in each EDB relation will not

change during evaluation procedure.

2. All operations are monotone. This means no negated atomic formulas are

allowed.

WNDL executor evaluates WNDL programs with a procedure based on Algorithm

2. It also relies on the two assumptions listed above.

3.2.2 Executor Variable Binding and Propagation

WNDL program evaluation procedure uses relations to represent the data found

on Web pages. In this section, we will explain the variable binding and the relation

evaluation of WNDL.

In this discussion, we adopted the following notation: X
__

denotes a tuple of one or
more relation attributes, X1, X2,…,Xn.

A WNDL program can be conceptually represented as the following general

datalog program.

1.Output(S
__

IO, S
__

O) :- Session(S
__

I, S
__

IO, S
__

O, S
__

Tmp). where S
__

I�S
__

IO�S
__

O�S
__

Tmp=�iE
__

i

2.Session(S
__

I, S
__

IO, S
__

O, S
__

Tmp) :- E1(E
__

1)&E2(E
__

2)&…&Ei(E
__

i).

3.{Session(S
__

I, S
__

IO, S
__

O, S
__

Tmp) :- E1(E
__

1)&E2(E
__

2)&…&Ei(E
__

i)&

Session(S
__

I, S
__

IO, S
__

O, S
__

Tmp).} // optional

4.Ei(E
__

) :- R1(e
__

1, n
__

1)&R2(e
__

2, n
__

2)&…&Rj(e
__

j, n
__

j). where E
__

= �j(e
__

j� n
__

j)

5.Rj(e
__

j, n
__

j) :- Fetcher(e
__

j, WebPage, P
__

j)&

Extract(WebPage, n
__

j, Rule).

Code 8. WNDL program in datalog representation

41

In clause 5 of Code 8, request j is represented as a relation Rj that can be denoted

as Rj(e
__

j, n
__

j) where e
__

j represents the variables that are defined in the EdgeInput block

of the edge that is involved in request j, and n
__

j denotes the variables that are defined

in the Schema block of the node that is involved in request j. During the execution, e
__

j

and constant parameters that are set in WNDL script will be passed to page fetcher, a

WebPage will then be returned. This WebPage and its corresponding extraction rule

will be passed to extractor, and then n
__

j will be returned. In actual execution, attributes

in e
__

j and n
__

j will be renamed to session variables according to the binding
specifications by the VarBind elements in request j, as expressed in the clause 4.

In clause 2 and 3, S
__

I, S
__

IO, S
__

O, and S
__

Tmp represent session variables with the types,

In, InOut, Out, and Tmp, respectively. These session variables are declared in

SessionVar elements in WNDL scripts. The optional datalog clause 3 presents when

there are dependency specifications between episodes in WNDL scripts. Finally, the

output will be instantiated to relation Output as expressed in clause 1.

3.2.3 WNDL Program Evaluation Procedure

WNDL programs are closely related to datalog programs without negation as

introduced in section 3.2.1. They have the following corresponding relationship: A

WNDL session corresponds to a datalog program. A WNDL episode corresponds to

an IDB relation, and requests correspond to EDB relations. Loop is a special structure

that does not exist in datalog. However, there are functional overlaps between loops

and episodes that mutually depend on each other. A set of such episodes can be

interchangeable with a loop structure. To keep the logic cleanness of an episode’s

chain nature and help to organize a WNDL program well, both of these two features

are provided by WNDL.

Algorithm 3 is the actual evaluation procedure for a WNDL program that is

defined by a Session element. In this pseudo code, data are denoted by italic names

and relations are named with a capital character prefix. Relation Ei represents current

data set of episode ei. Relation I represents the value of session variables with type In

or InOut. Relation O represents session variables with type Out or InOut. There are

several primitive functions that are denoted with bold face. Their functionalities are

listed in Table 2.

42

join Join the argument relations with natural join.

projection(E, s) Project relation E to relation scheme denoted by s.

intersection(E1, E2)

Generate a relation with tuples come from E1 so that when

this tuple is projected to E2’s scheme, it is a tuple in E2.

(Scheme of E2 is a proper subset of the scheme of E1)

fetch_data
Issue a sequence of HTTP requests, get the pages, and

extract data from these pages.

generate_HTTP_request
According to tuples of edge parameter relation and other

information to generate full information for HTTP requests

Table 2. Primitive Functions Used in Algorithm 3

The execution of Algorithm 3 starts with the execute_session function,

which executes a WNDL program defined in a session with m episodes. It calls

execute_episode to execute episodes in an infinite loop until no more new data

can be found. If there is no mutually dependent episode exists, only one iteration will

be performed.

The execution of episode ei starts with a reference relation. It is formed by the

common attributes between the episode that is being executed, relation I, and its

prerequisite episodes. Further extracted data during the execution of episode ei will be

joined with this reference relation to form the final Ei in certain iteration.

generate_request_and_filter generates a temporary relation of tuples

of edge variables, that is e
__

in the last section, each tuple will be used to generate a
HTTP request later by generate_HTTP_request. Filter is a relation that will be

used to filter out invalid tuples that are extracted from each page.

43

execute_session(E1, E2, …, Em) // Execute a session with m episodes.
begin

do

for i = 1 to m

∆Refi := generate_ref(i, E1, E2, …, Em);

∆Refi := ∆Refi – Refi;

Refi := Refi + ∆Refi;

if ∆Refi = Ø and Ei � Ø

continue;

end of if

execute_episode(Ei, ∆Refi);
end of for

while for i to m ∆Ei � Ø;

return projection(join(E1, E2, …, Em), O);

end

genenerate_ref(i, E1, E2, …, Em) // Generate the reference for episode i

begin // from all of the m episodes.

Ref := join(I with Ej’s from j = 1 to m

if ej is a prerequisite of ei);

projection(Ref, Ei);

return Ref;

end

execute_episode(E, Ref) // Execute episode e that is represented by

Begin // relation E with reference relation Ref.

E := join(E, Ref);

for each content element s defined in e

if s is a loop

execute_loop(s, E)

end of if

if s is a request

execute_request(s, E)

end of if

end of for

end

44

execute_loop(l, E) // Execute loop l with data relation E.

begin // This function does not handle self-loop.

if l is a self-loop

return;

endif

for i = 0 to l.max

∆E := ∆E - E;

if ∆E = Ø

break;

end of if

E := ∆E
for each step s defined in l

if s is a loop

execute_loop(s, ∆E);
end of if

if s is a request

execute_request(s, ∆E);
end of if

end of for

i := i + 1;

end of for

end

execute_request(r, E) // Execute request r with data relation E.

begin

Requests, Filter := generate_request_and_filter(r, E);

Result := fetch_data(Requests);

Result := intersection(Result, Filter);

E := join(E, Result);

end

generate_request_and_filter(r, E) // Generate HTTP request parameters

begin // for request r with relation E.

Req := projection(E, r.edge);

Requests := generate_HTTP_request(Req);

Filter := projection(E, r.edge � r.node);

return Requests, Filter

end

Algorithm 3. WNDL Evaluation Procedure

45

The whole process of evaluation of a WNDL program follows the algorithm listed

above with an exception when a page with “next pages” or a loop on DWM involves

only one node. “Next pages” appears frequently when issuing a query to a CGI form.

It is necessary to follow the chain of these inter-linked pages to obtain all of the query

results. Executor will concatenate the results rather than join the results, which is the

procedure for other kinds of loop. WNDL executor handles this kind of pages with

several heuristics to terminate this loop. These heuristics work rely on a link to next

page as shown in Figure 8.

Figure 8. A next page link that can be found in a return page from Yahoo!.

Our method works no matter it is a button, an image, or a link text as long as it

has an underlying static link or a HTML form1. Executor requires schema of this node

to include this link. The self-looping edge has to specify this link with its URL. Recall

that the example in chapter 2, edge 3 is such an edge. The variable url_next will be

extracted in node B and will be used as the URL of edge 3 to obtain the next page,

which also belongs to node B page class. The process will repeat as a loop until one of

the following conditions occurs.

1. Maximum iteration number specified in the WNDL document is reached.

2. No next-page link can be found in current iteration.

3. The next-page link extracted in current iteration has been visited in previous

iterations.

4. No more new data can be found in current iteration.

5. A failure occurs when the executor applies this node’s extraction rule(s) to

the page obtained in current iteration.

Condition 2 is applicable to most of the cases in our experiments. Condition 3 and

4 are designed to prevent the executor from visiting the “previous-page link” that can

be found in many last pages. Condition 5 is for the cases where the last page returned

by the CGI is in a format different from data pages and says something like “Sorry,

we cannot find more results”. These heuristics are induced from dozens of Web sites

of our case studies and work fine in our experiments.

1 The other limitation is when the parameters of the form can only be determined by running a
program like JavaScript at browsing time.

46

3.3 Exception Handling

The World Wide Web is an unreliable and unpredictable environment. Many

exceptions can happen. For example, network traffic may be jammed, Web servers

may be temporarily down, page structure of a site may be changed, and Web page

layout may be modified. All Web applications are required to handle some or all of

these exceptions or they may fail frequently.

WNDL allows its users to specify the number of retry attempts and the time

interval between each attempt. The time intervals are equal to the time bounds of

timeout events. These settings can prevent the executor from waiting forever for a

stalled request to complete. When other failures occur, we simply throw a Java

language exception to the upper layer application indicating what error happened and

leave the remaining error-processing task to the application. The exceptions that the

executor can report to the application are classified into four categories.

y Invalid WNDL scripts. For example, a required attribute is missing, referring

to an undefined variable, etc.

y HTTP failures.

y Failed extraction passes.

y General Java language exceptions, which is not supposed to happen.

We made such a design decision that the executor will indicate the error without

further reporting actions because generally, there is no way to save the execution if

one of these exceptions occurs. So we leave the handling to be determined by the

application. The upper layer application may then terminate immediately or try

another navigation plan.

47

Chapter 4

Experiments and Evaluations

In the previous two chapters we described the design and implementation of our

WNDL wrapper. Since our claim is to develop a way for rapidly building wrappers for

information mediators on the Web, in this chapter, we conducted a series of

experiments to evaluate two critical aspects of the WNDL wrapper. First is to show

the coverage of our WNDL wrappers in section 4.1. Second, we will show the

simplicity of configuring WNDL wrappers for a set of Web pages and the generality

across domains of our approach in section 4.2.

4.1 Expressiveness of WNDL

In this part of our experiments, we want to show that WNDL is sufficiently expressive

to cover Web sites in a wide variety. We decided to use WNDL wrappers to practically

develop an application of integration of information from multiple Web sites. We

picked a topic and build an experimental meta-search Web site in a specific domain.

The topic of our domain is job finding. We chose our target Web sites from category

lists of Yahoo!.com (5 sites) and yam.com (14 sites) without deliberate intention in

picking sites that are especially suitable for WNDL wrappers. These web sites are

listed in Table 3.

48

During the development of Software Lego and WNDL wrappers, we have

conducted the experiments mentioned above and the experiment that will be discussed

in next section. We already tested our wrappers and showed that they are capable of

successfully wrapping these 40+ Web sites. These sites can be classified into several

types. We will show the expressiveness of WNDL with example cases.

Name Entrance Edge URL Node Edge

104Bank http://www.104.com.tw/cfdocs/job1qry1.dbm 3 31

37Job http://www.37.com.tw/scripts/asp/fj_rs_new.asp 1 2

9999 http://www.9999.com.tw/m1201.asp 1 2

Career

Builder
http://www.careerbuilder.com

2 3

Career

Path
http://www.careerpath.com/service/cp/FindJob?

2 3

CTCareer http://www.ctcareer.com.tw/findjob.exe 2 3

Career

Web
http://www.cweb.com/jobsearch/jobsearch.cfm

1 2

Horse http://www.job.com.tw/Horse/newHorse-right.asp 1 1

IlanJob http://104.ilhg.gov.tw/jobdetail.asp 1 1

Job 4 free http://www.job4free.com/findjob2.cfm 1 1

JobsDB http://www.jobsdb.com.tw/TW/B5/default.asp 1 2

Kauhsiung http://www.07job.com.tw/m1201.asp 1 2

Monster http://jobsearch.monster.com/jobsearch.asp 1 2

NYC http://site1.nyc.gov.tw/db/index.asp 3 4

Raritan http://job.raritan.com.tw/fjobmain.cfm 1 1

Taichung http://www.04job.com.tw/m1201.asp 1 2

TaipeiCity http://163.29.128.6/OKwork/Data_Com/Company2.asp 2 2

WSJ http://wsj.careercast.com/texis/wsj/wsjjobsearch/dosearch.html 1 2

YouCool http://job.youcool.com.tw/career_c/search_jobs/s_by_disc_search.asp 1 2

Table 3. Web Sites in the WNDL Experiment

4.1.1 Chain and Loop

WNDL is capable of representing and fetching data from Web sites from as simple as

simplex node chains to those as complex as long node chains with loop structures.

1 The next page link of 104Bank is determined by a JavaScript function and cannot be preset. Thus our
configuration in fact lacks the edge 4 in Figure 13.

49

A Simplex Chain of Nodes

Figure 9. DWM diagram of TaipeiCity and TTimes

The page structure of TaipeiCity looks like a chain. WNDL executor will follow a

static link via edge 1 to node A. It can find dozens of static links there and use these

URL’s on edge 2 to move on to node B. At node B, it can obtain the target data of this

navigation episode. Data found on each node in the path can be carried on by the

executor until the end of the execution of this episode. For example, in TTimes1 that

has a similar structure to TaipeiCity, some of our target data are stored in node A.

Information found in node A and node B will all appear in the result data set.

A Long Chain with Loop

Figure 10. DWM diagram of NYC

The page structure of NYC is similar to the one shown in Figure 9 with an

additional looping edge, edge 4. Though edge 3 is not a form query, NYC distributes

its data into multiple pages. Edge 1 is particularly remarkable because the purpose of

sending a HTTP request via edge 1 is in fact only to trigger NYC’s CGI program to

start a user session2 inside their Web server.

1 TTimes (http://www.ttimes.com.tw/index_sub1.html) is a site providing on-line news, which is one
of our test Web site but is not in our job-finding corpus list.
2 NYC’s CGI program responds the same static URL request with different results according to this
user session mechanism. This user session state will be terminated if the Web user has no interaction
with the server longer than three minutes.

��

�

�

Job Category/
News Index

Job List/
Detailed StoryStatic Link

Node

���

�

� �

�
New Jobs

Full Tile/
Part Time

Job List

50

4.1.2 Arbitrary Number of Data Extraction Passes

The design of WNDL makes it possible to take arbitrary number of data extraction

passes on a single page. Generally there is exactly one extraction pass over a single

Web page, but to extend the number of pass to an arbitrary number we can provide the

following functionalities that will be explained by examples.

A Zero Extraction Pass

Figure 11. DWM diagram of CTCareer

CTCareer is an example with zero extraction pass in our corpus. What we want to

do is placing queries via edge 2 to fetch the target information on a multiple page

node B. But in this case, edge 2 cannot be an entrance edge since HTTP clients need

to obtain a cookie object when request pages, which belong to node A. Thus, though

we do not need any information on node A, we still need to visit node A once in order

to be able to send our queries. Hence, let node A to be an empty node without any data

and extraction pass can make the process more efficient. The CGI query form is in

fact on node A, but since we need to bind CGI query parameters during run-time, we

configured the form in the definition of edge 2 completely with full set of input

variables and do not require to extract the HTML form on node A.

A Two Extraction Passes

Figure 12. DWM diagram of JobsDB

�

�

�

�

�

Job Query Form Job List

Form Query

Zero Extraction
Pass Node

�

�

�
Job List

Two Extraction
Passes Node

51

JobsDB is a site that requires two passes of data extraction over a single node.

In this site we plan to send a query to a CGI program to get result pages in page class

A, we configured edge 1 as an entrance edge to send queries to that CGI program. A

problem occurred in extracting data from node A with SoftMealy extractor. The

contents of page class A are wholly contained within a HTML form block that

includes all of the query results as well as the next-page link1. This is another bad

HTML programming practice that can be found on the Web. The scope of the data

area is overlapped with the scope of next-page link in this page. This situation causes

the extractor fail to extract query results and the next-page information at the same

time, which is required by the operation of executor. Allowing multiple extraction

passes over one node makes it possible to solve this problem. We can make following

configuration in the WNDL script so that in the first pass, the extractor will extract

query results and will extract the next-page link in the second pass. The executor will

then combine the information extracted by the two passes to make it appear as

produced by only one pass.

A Three Extraction Passes Case

Figure 13. DWM diagram of 104Bank

There is a node that needs three passes of extraction in 104Bank, as illustrated by

node B in Figure 13. This node requires multiple extraction passes for another reason.

This is a page with sixty-eight HTML buttons with similar format. Each one is

contained in a form. Our purpose of this navigation is to pick only three buttons from

all the sixty-eight buttons and send the corresponding CGI queries. The problem is the

CGI query parameters within the form change everyday so that we cannot identify one

or several buttons out of all of these buttons with a preset form text for matching.

However, the flexibility provided by WNDL makes it possible to take three passes of

extraction over the node B pages. Each one selects one button for further navigation.

1 In this case, the next-page link is nearly the whole page.

� � �

�

� �

�

Job Category
Location

Job List

Three Extraction Passes Node

52

4.2 Utility of WNDL Wrapper

In this section, we show the utility of our WNDL wrapper with empirical results. First,

we show how easy it will be to wrap a Web site with WNDL. Second, we will show

the generality of WNDL wrappers.

4.2.1 Configuring a New Wrapper

To assess the simplicity of configuring a wrapper of a new Web site, we released the

previous version of our work, Software Lego software package to students who took

the course, “Principles of Internet Agents” at the National Chiao-Tung University as

their term project material in Jan. 2000.

These students were divided into eleven groups. Each was formed with two

students. Every group was assigned an application domain and was asked to build a

shopping bot application that integrates several Web sites based on Software Lego.

Eight days after the release date of that software package, only one group failed to

complete the task. All of the remaining ten groups successfully wrapped three to five

Web sites. Moreover, there was one group completed a cellular phone

comparison-shopping site with four connected Web sites within only one night. They

defined a canonical schema according to their application domain and use Software

Lego to fetch data from the connected Web sites corresponding to that data schema.

All of these groups built a Web site interface for their shopping bot agent. Users of

their system enter a query and then the Software Lego wrapper will be called to fetch

data, combine data and return the result to their system. Those data may then be post

processed in their program. Finally search results from multiple Web sites are

integrated in a uniform outlook and are presented to the users. Table 4 lists the Web

sites used by these ten groups1.

1 There were only twenty-seven different sites because multiple groups may use the same Web site.

53

Site Homepage URL Domain

http://www.books.com.tw Book

http://www.kingstone.com.tw Book

http://www.silkboook.net Book

http://www.longshine.com.tw Book

http://www.ylib.com.tw/home.asp Book

http://www.myjob.com.tw Job

http://www.jobs.com.tw Job

http://www.adhot.com.tw Job

http://www.jobbank.com.tw Job

http://www.job4free.com Job

http://www.kingnet.com.tw Job

http://job.Raritan.com.tw Job

http://www.moea.gov.tw Job

http://www.ezjob.com.tw Job

http://www.ctcareer.com.tw Job

http://www.funny.com.tw DVD/VCD Software

http://www.dvdmall.com.tw DVD/VCD Software

http://www.3fdvd.com DVD/VCD Software

http://www.hantop.com.tw Computer Hardware

Computer Hardware

Home Applianceshttp://leapnet.jeya.com.tw

Cellular Phone

http://www.shoppingguide.com.tw Computer Hardware

http://www.answer.net.tw Cellular Phone

http://www2.seeder.net Cellular Phone

http://www.taconet.com.tw Cellular Phone

http://store.acer.net Home Appliances

http://www2.any.com.tw Home Appliances

http://dmd.pros.com.tw Home Appliances

Table 4. Twenty-seven Web sites that were used in the NCTU experiment

54

After that, we asked one colleague in our lab who did not participate in this

project and was not familiar with the WNDL wrapper to configure wrappers of

job-finding Web sites. He successfully configured wrappers of thirteen Web sites as

well as trained dozens of SoftMealy extractor rules required for these sites in one

week. He also set up a demo Web site that functions roughly the same as those NCTU

term projects. These empirical results should provide evidences that WNDL wrappers

can be configured in a short time and are capable of wrapping Web sites in a wide

variety.

4.2.2 Generality Across Application Domains

When WNDL and its executor were designed, we did not take any advantage of

domain related information. We expected our solution is domain independent. The

NCTU experiment also coincides with this presumption.

The Web sites used by those students come from six different domains. On-line

booksellers, job search engines, video software stores, computer hardware stores,

cellular phone shops and home appliance stores. These domains differ a lot to each

other without common background knowledge or structure/format of Web sites. This

experiment suggests that the generality of WNDL can be across various application

domains.

55

Chapter 5

Related Work

In this chapter, we will introduce previous work related to this thesis. Section 5.1

introduces three languages that can also be used to describe automation of Web

interactions. Another work that also addresses Web navigation problem is included in

section 5.2.

5.1 Web Automation Languages

Because of the practical need of automation of Web access, several other researches

were also initiated to try to develop a way to automate interactions with the Web.

Coincidentally, they all result in defining a language that describes Web interactions.

5.1.1 Web Interface Definition Language (WIDL)

In terminology of WIDL [25], a service is a request/respond interaction with the

server. WIDL was designed to capture the details of the interfaces to services. Like

WNDL, WIDL is also an application of XML and includes definitions of a set of

XML elements. It is also a script language that will be interpreted during run-time.

WIDL is a language that is similar to edge definitions of WNDL. The details of

obtaining a Web page such as URL, form parameter setting, and HTTP methods are

56

also represented by XML elements/attributes in WIDL. Unlike WNDL, WIDL does

not define or determine a mechanism for accessing document data. It relies on an

object model referencing mechanism to access data on Web pages. WIDL also comes

with a variable system and variable value binding definitions such that WIDL can also

handles dynamically generated URL and CGI program parameter values. Moreover,

Web page contents matching mechanism is used to determine the condition of the

binding result. When binding failure occurs, rebinding is possible. On the contrary,

WNDL use the result of extraction to determine whether a binding attempt succeeds.

The primary difference between WIDL and WNDL is the aims they were

designed to achieve. WNDL aims to capture navigation on the Web while WIDL

focuses on defining an interface to Web services. Moreover, WIDL does not combine

data, it only use data to facilitate further service interface access. Though there is a

mechanism in WIDL called service chain, it cannot be compared to Navigation

Program in WNDL. Service chain is a chain of services that works as the following

description. Data obtained from each service are sent to next service as the input

binding of that service. It can be used with systems when it is necessary to invoke

multiple services in sequence to complete a transaction. But obtained data from

certain service cannot be used to facilitate a service other than the immediate

successor on the service chain. More than that, each service of WIDL associates at

most one input binding and at most one output binding, which have global scope

names, so recursive execution such as next page handling cannot be achieved by

service chain of WIDL, which greatly minimizes the utility of their language in

practice.

5.1.2 Web Language (WebL) and Hippo Core Language (HCL)

WebL [14][20] is another language that was designed for the automating of

Web-related tasks. The authors tried to figure out a general programming model of the

computation on the Web. This language features two distinguishing features, service

combinators [5] and markup algebra. A service in WebL is an HTTP information

provider wrapped in error-detection and handling code while a service combinator is

an operator for composing services. On the other hand, markup algebra is for

structured text searching on Web pages.

57

Several service combinators are available in WebL:

y Sequential Execution, S ? T – secondary service T will be consulted if S fails,

otherwise result of S will be returned.

y Concurrent Execution, S | T – the result of the one that succeeds first will be

returned.

y Time Limit, timeout(t, S) – acts as S but timeouts after t seconds.

y Repetition, repeat(S) – repeats S until it succeeds.

y Non-termination, stall – dummy combinator that does nothing1.

These service combinators are applied on basic service url that represents a

static link and gateways like gateway get and gateway post that represent CGI

gateways that need arguments passing. These service combinators can also be used to

combine with each other to produce joint effects.

Two types of text search can be done in markup algebra of WebL, structured

search that can be used in searching with element names and pattern search that

extracts all occurrences of a regular expression in the text of a page. Besides, set

operators, position operators, and hierarchical operators are also defined for

operations on page texts.

shopAmazon := fun(title, autorfirst, authorlast)

books := [];

params := [. .];

params[“author”] := authorfirst + “ “ + authorlast;

params[“authormode”] := “full”;

params[“title”] := title;

params[“titlemode”] := “word”;

params[“subject”] := “”;

params[“subjectmode”] := “word”;

page := postpage(“http://www.amazon.com/exec/obidos/atsquery/”,

params);

items := page.Elem(“dd”);

every book in items do

info1 := substring(book.Text(),

‘\w*([\^{}/]*) (/ ([\^{}/]*))?(/ [\^{}\d]*(\d*))?’)[0];

info2 := substirng(book.Text(), ‘Our Price: \$(\d*.\d*)’);

1 This combinator can be used in operations such as “wait and retry later”.

58

if(size(info) > 0) and (info1[3] != “Audio Cassette”) then

books = books + [[.

title = (page.Elem(“a”) directlybefore book)[0].Text(),

link = (page.Elem(“a”) directlybefore book)[0].href,

author = info1[1],

type = info1[3],

year = (select(info1[5], 2, 1) ? “N/A”),

price = info2[0][1]

.]]

end

end;

books

end

Code 9. A WebL function excerpted from [14], which shops in amazon.com.

The code listed in Code 9 reveals the imperative nature of WebL that is similar to

traditional computer languages. The authors of WebL focused on defining a

programming language that encapsulates normal Web interaction operations and deals

with error handling between several information sources that have identical contents.

It was designed under the basic premise that providing programmers an easier way to

write robust programs for automating Web access. Developers use the explicit

language structures, service combinators, to compose their Web programs.

In contrast to WebL, WNDL serves as a behavior definition language for our

WNDL wrapper, which is supposed to be used in an application requiring automated

Web access as a Web data gathering subsystem. The problems addressed by WebL

such as sequential execution, concurrent execution, and other error handling

operations are left to be handled by the applications that take advantage of WNDL

wrappers and are beyond the scope of this thesis.

The other noticeable point of WebL is their method for extracting data from Web

pages, markup algebra. The structured search uses element names to identify data,

though this mechanism is applicable to XML documents, it will be hard to be applied

on HTML documents. The pattern search is another risky part, as we can see in Code

9, the regular expression fails easily even a minor change of page format occurs.

Unfortunately, format of Web pages changes frequently and even pages in the same

format are not consistent to each other. Code the regular expressions by hand is also a

tedious and error-prone task.

59

HCL [7] is a language similar to WebL and addresses some drawbacks figured out

by the authors of HCL and provides the following features:

y the unification of universal resource, text file and string types

y implicit URL fetching.

y parallel execution

y alternation execution

However, this work is still in an early stage, and their methodology is not clearly

stated in their publication.

5.2 Work that Addresses the Web Navigation Problem

Marc Friedman, Alon Levy, and Todd Millstein [10] figured out two distinguishing

characteristics of data on the Web.

1. Linked pairs of pages contain related data.

2. Obtaining the data from the site may require navigation through a particular

path in the site.

In [10], they focused on introducing their data integration approach, GLAV

(global-local-as-view) and its complexity analysis, which is shown to be as efficient

as LAV (local-as-view). They took a pure datalog approach and suggest an algorithm

that basically can be taken prior to user queries for generating a navigation plan.

Their work is focused on query plan generating and leaves the Web page fetching

details in vain. They ignored the need of additional parameters for HTTP access such

as base URL’s for relative URL’s, HTML form parameters in hidden type as well as

other issues such as HTTP connection timeout, retry, failed service, etc. They leave

these tasks completely to their datalog executor that operates only rely on parameters

passed from datalog programs. According to our research, we found this approach is

not only impractical but also makes adding features such as fuzzy matching or string

concatenation to the system awkward.

60

Moreover, in their approach, it is necessary to put the whole navigational details

such as “next-page information” or “query keywords”, which are irrelevant to user

queries, into their high-level logic plan and may overwhelm the cleanness of the

meaning of logical plans. On the other hand, we focus on a wrapper that wraps a web

site with a user session concept and frees high-level query plan from handling

navigational details, which may be a better level of abstraction and serves as a better

conceptual unit.

61

Chapter 6

Conclusion

6.1 Summary

In this thesis we presented a configurable information gathering software robot called

WNDL executor that crawls the Web and its configuration language, WNDL that

captures the navigation behavior on the Web.

The behavior of WNDL executor is determined by an XML-based script language

called WNDL. This language was designed to capture the process of navigation and

data gathering during a user session. WNDL executor can traverse both static and

dynamic links on the Web while extracts and accumulates text data from the visited

Web pages at the same time. Those data can then be used to facilitate further Web

navigation if the information for navigation must be obtained during run-time.

The system was implemented in Java language as a class library. Applications call

functions in this library and can be insulted from handling the detail and repeated

tasks such as HTTP access, data extraction, and data combination. Our system is

supposed to be able to benefit applications that need automated Web interactions. The

feasibility of our idea was experimented on realistic Web applications. We also

compared our approach with some contemporary related work at last.

62

6.2 Critiques and Future Work

In section 2.4, we already discussed several assumptions of WNDL that may be

violated in real cases. However, there are some other problems we did not address in

this thesis.

Web pages that require client-side computations like Java Applet, JavaScript,

VBScript and the likes to determine URL’s or CGI program parameters exist on the

Web. Web pages in this category require an interpreter or executor on client side to

process them. However, our system is not equipped with these interpreters. Therefore,

in most of cases we cannot handle this kind of Web interaction. In other cases, since

they are still using standard HTTP, we may manually determine the values of CGI

parameters and set them as constants in WNDL scripts though this method does not

really solve the problem. Although the unsolvable cases do not appear frequently1, we

need to find a better way to handle this problem. For example, we plan to incorporate

a JavaScript interpreter into our WNDL executor in the future. This should help a lot

since JavaScript is the most frequently encountered case.

HTTP failure handling is not completely done in the current work. WNDL

executor and WNDL currently only provide timeout and retry mechanism. When other

failures happen, we simply throw a Java language exception to the upper layer

application indicating what error happened and leave the error-processing task to the

application. However, it helps if exception handling, alternative execution or

conditional execution can also be specified in WNDL. It is possible for WNDL to be

extended to accommodate these features in the future.

Extension to WNDL executor in join operations to allow fuzzy term matching

based on statistical measurement or some other techniques is also a possible future

work. This feature is supposed to make WNDL solution to cover a much larger scope

of cases.

Currently, WNDL scripts are composed by human programmers. Although its

syntax is quite intuitive and is easy to learn, composing a WNDL script is still a

laborious task and may require some level of familiarity with HTTP and HTML.

Better Web automation can be achieved if we can develop a way to generate WNDL

scripts from human Web browsing.

1 In our experiments, we encounter only one unsolvable case, the next-page link of 104Bank.

63

Bibliography

[1] Jose-Luis Ambite, Yigal Arens, Naveen Ashish, Craig A. Knoblock, Steven

Minton, Jay Modi, Maria Muslea, Andrew Philpot, Wei-Min Shen, Sheila Tejada,

and Weixiong Zhang. The SIMS Manual Version 2.0, December 22, 1997.

[2] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu, and Craig A. Knoblock. Retrieving

and Integrating Data from Multiple Information Sources. In International

Journal on Intelligent and Cooperative Information Systems Vol. 2, No. 2. pp.

127-158, 1993.

[3] Arthur Do Consulting. HTMLStreamTokenizer, 1998.

http://www.do.org/products/parser/

[4] Greg Barish, Craig A. Knoblock, Yi-Shin Chen, Steven Minton, Andrew Philpot,

and Cyrus Shahabi. TheaterLoc: A Case Study In Building An Information

Integration Application. In Proceedings of the IJCAI-99 Workshop on Intelligent

Information Integration, 1999.

[5] Luca Cardelli and Rowan Davies. Service Combinators for Web Computing.

DEC SRC Research Report 148, June 1997.

[6] William W. Cohen. Integration of Heterogeneous Databases Without Common

Domains Using Queries Based on Textual Similarity. SIGMOD 98, 1998.

[7] Richard Connor and Keith Sibson. HCL – a language for Internet Data

Acquisition. Workshop on Internet Programming. ICCL ’98, 1998.

[8] Rick Darnell. Html 4 Unleashed: Professional Reference Edition. Sams.net,

December 1, 1997.

64

[9] Robert B. Doorenbos, Oren Etzioni, and Daniel S. Weld. A Scalable

Comparison-Shopping Agent for the World-Wide Web. In Proceedings of Agents

'97 Conference, 1997.

[10] Marc Friedman, Alon Levy, and Todd Millstein. Navigational Plans for Data

Integration. In Proceedings of the IJCAI-99 Workshop on Intelligent Information

Integration, 1999.

[11] Chun-Nan Hsu and Chien-Chi Chang. Finite-State Transducers for

Semi-Structured Text Mining. In Proceedings of IJCAI-99 Workshop on Text

Mining: Foundations, Techniques and Applications, 1999.

[12] Chun-Nan Hsu and Ming-Tzung Dung. Generating Finite-State Transducers for

Semi-Structured Data Extraction from the Web. In Journal of Information

Systems Vol. 23, No. 8, pp.521-538, 1998.

[13] Chun-Nan Hsu, Hung-Hsuan Huang, Elan Hung, and Chian-Chi Chang. Wrapper

Agent Kernel(Shopbot Toolkit) Version 0.1 the Manual. Technical Report

IM-IIS-00-001, Academia Sinica Institute of Information Science, Jan. 2000.

[14] Thomas Kistler, and Hannes Marais. WebL – a programming language for the

Web. In Computer Networks and ISDN Systems (WWW7), vol. 30, April 1998.

[15] Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish, Pragnesh

Jay Modi, Ion Musela, Andrew G. Philpot, and Sheila Tejada. Modeling Web

Sources for Information Integration. In Proceedings of the Fifteenth National

Conference on Artificial Intelligence, 1998.

[16] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. Wrapper

Induction for Information Extraction. In Proceedings of the Fifteenth

International Joint Conference on Artificial Intelligence (IJCAI-97), 1997.

[17] Simon St. Laurent. XML A Primer. MIS Press, 1998.

[18] Sean McGrath. XML By Example: Building E-commerce Applications. Prentice

Hall PTR, 1998.

[19] Ion Musela, Steve Minton, and Craig Knoblock. STALKER: Learning Extraction

Rules for Semistructured, Web-based Information Sources. In Proceedings of

AAAI-98 Workshop on AI and Information Integration, 1998.

[20] Keith Sibson. Service Combinators and WebL.

http://www.hippo.cs.strath.ac.uk/papers/service_combinators_and_webl.html

65

[21] Sun Microsystems, Inc. JavaTM API for XML Parsing (JAXP), version 1.0.1,

May 2, 2000.

http://www.javasoft.com/products/xml/index.html

[22] Sun Microsystems, Inc. JavaTM 2 SDK, Standard Edition, version 1.3.0, May 8,

2000.

http://java.sun.com/j2se/1.3/

[23] Ronald Tschalär. HTTPClient, version 0.3-2, March 19, 2000.

http://www.innovation.ch/java/classes.html

[24] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems.

Computer Science Press, 1988.

[25] WebMethods, Inc. Phillip Merrick and Charles Allen. W3C Working Note. Web

Interface Definition Language (WIDL), September 22, 1997.

http://www.w3.org/TR/NOTE-widl-970922

[26] World Wide Web Consortium (W3C) Recommendation. Extensible Markup

Language (XML) 1.0, February 10, 1998.

[27] World Wide Web Consortium Working Draft. Web Characterization Terminology

& Definitions Sheet, May 24, 1999.

[28] World Wide Web Consortium Candidate Recommendation. XML Linking

Language (XLink) Version 1.0, July 3, 2000.

66

Appendix.1

Appendix A. WNDL Reference

A.1 WNDL Element Structure

WNDL – WNDL document root.

Map – Data Web Map block.

Entrance – Edges from outside to this map.

Node – Represent one node on the described DWM.

Schema – Data schema of this node.

Attr – Attribute definition.

ExtractRule – An extractor rule applicable to this page class.

Edge – Represents one edge on the described DWM.

EdgeInput – Input parameters for the execution of this edge.

EdgeParam – Parameter definition.

Query – Parameters for CGI query.

QueryParam – Parameters definition for CGI query.

TimeOut – Timeout settings.

Program – Navigation Program block.

Session – Represent one user session.

VarDeclr – Variable declarations for this user session.

SessionVar – Represent one session level variable.

Access – Represent how to access this web site during this user session.

Episode – Represent one episode.

Dependency – Episode dependency specification.

DependOn – Specify a prerequisite episode.

Request – Represents one HTTP request.

VarBind – Variable binding of this request.

Loop – Represent a loop within this episode.

Appendix.2

A.2 WNDL Elements Reference

Attribute Value Type:

Type Description

String A text string.

Number A decimal number.

Enumeration The value needs to be picked from a set of valid values.

URL A universal resource locator.

Reference A reference to a variable’s value, the references are written as a dollar sign

followed by a variable name. For example, “$variable_name”.

Because of the syntax of variable references, if the leading characters of one

variable’s value are dollar signs, each one of them needs to be replaced by double

dollar signs, that is, “$$”.

WNDL Element

This is the root element of a WNDL document tree. It contains the two primary elements of a

complete WNDL description.

Attribute Description Type Number Default

Name A name for this configured web site information source. String 1 Null

Version Identify the version of WNDL being used in this script. String 0 or 1 Null

Contents Type Number

Map Element 1

Program Element 1

Map Element

This element represents a Data Web Map.

Contents Type Number

Entrance Element 1

Node Element 1 or more

Appendix.3

Entrance Element

Specify the edges that do not belong to any node here. They are the entrance of this site, that is,

they are directly accessible from outside the web site.

Contents Description Type Number

Edge
Entrance edges of this web site.

�Only put the edges that have no source nodes here.
Element 1 or more

Node Element

The instances of this element represent one node on the WDM.

Attribute Description Type Number Default

Name
The name of this configured web information source.

�All node names need to be unique.
String 1 Null

Contents Type Number

Schema Element 0 or 1

ExtractRule Element Unlimited

Edge Element Unlimited

Note: The valid number of ExtractRule depends on the existence of Schema. If there are no

Schema element presents, no ExtractRule is allowed. If there is one and only one Schema

element, at lease one ExtractRule element is required.

Schema Element

Data schema of this node is defined here. Although there is only one dimension of the data

schema in this definition, the data schema can be multi-dimensional.

Contents Type Number

Attr Element 1 or more

Appendix.4

Attr Element

Attribute Description Type Number Default

Name

Name of this variable.

�All attribute names within one schema need to be

different.

String 1 Null

TagFilter

HTML tag filter option:

Valid values:

KeepAll – Keep all HTML tags.

KeepLink – Filter out all HTML tags except URL links of

<A> tags.

NoTag – Filter out all HTML tags.

String 0 or 1 KeepLink

ExtractRule Element

This element stores the extraction rule that will be used by SoftMealy extractor during

execution. The extraction rule is generated by the rule learner program and is not meant to be

readable for human. These rules are in plain text format and are necessarily contained within

one CDATA element. The rule can also be contained in a separated plain text file. In this case,

the path to that file is specified as the File attribute. If the File attribute and the contents of this

element present at the same time, the rule contained in the CDATA element will be used.

Attribute Description Type Number Default

File Path to the file that contains the rule String 0 or 1 Null

Contents Type Number

CDATA Text 0 or 1

Appendix.5

Edge Element

This element stores the necessary settings for executor to get a web page.

Attribute Description Type Number Default

ID
Identifier of this edge, edge id is required to be

unique.
String 1 Null

Type

Type of the target web page.

Valid values:

Static – A static link.

Dynamic – A form.

Enumeration 0 or 1 Static

Base Base URL of the target web page. URL/Reference 0 or 1 Null

URL URL of the target web page. URL/Reference 1 Null

Method
HTTP method for getting the target page.

Valid values: Get, Post
Enumeration 0 or 1 Get

Dest Destination node name. String 1 Null

Contents Type Number

EdgeInput Element 0 or 1

Query Element 0 or 1

Timeout Element 0 or 1

EdgeInput Element

Parameters passed from outside to this edge that are necessary for opening the target URL.

Contents Type Number

EdgeParam Element 1 or more

EdgeParam Element

This element represents one parameter.

Attribute Description Type Number Default

Name Parameter name. String 1 Null

Query Element

This element contains the parameters for CGI program query.

Contents Type Number

QueryParam Element 1 or more

Appendix.6

QueryParam Element

This element represents one parameter for this CGI query.

Attribute Description Type Number Default

FormInput Parameter name for this CGI query String 1 Null

Value
Parameter value, it can be a string constant or a

variable reference.
String/Reference 1 Null

Timeout Element

Timeout setting during HTTP operations

Attribute Description Type Number Default

Wait

Time between each attempt of connection to the web

server

Unit: second

Number 0 or 1 ∞

Retry Times of retry. Number 0 or 1 10

Program Element

This element contains possible user sessions for accessing this web site.

Contents Type Number

Session Element 1 or more

Session Element

This element represents one user session.

Attribute Description Type Number Default

Name Session name. String 1 Null

Contents Type Number

VarDeclr Element 1

Access Element 1

VarDeclr Element

Contents Type Number

SessionVar Element 1 or more

Appendix.7

SessionVar Element

Variables those will be used during this user session’s execution.

Attribute Description Type Number Default

Name Variable name. String 1 Null

Type

Type of this variable.

Valid values:

In – Input variables from application.

Out – Output variables after execution.

InOut – Appeared as both input and output.

Tmp – Intermediate variables.

Enumeration 0 or 1 Out

Label
Another name of this variable. If label name presents,

it will appear as the column name of the output.
String 0 or 1 Null

Value

Variable value. If this parameter is a constant, its

value can be specified here.

If there’s a value attribute, this parameter is a

constant. Otherwise, it is a variable.

String 0 or 1 Null

Access Element

This element describes the actual accessing part of this type of user session.

Contents Type Number

Episode Element 1 or more

Episode Element

The element represents one episode contained in this type of user session.

Attribute Description Type Number Default

Name Name of this episode. String 1 Null

User User name in the case that HTTP authentication is required. String 0 or 1 Null

Passwd
Password for HTTP authentication.

�Required if User presents.
String 0 or 1 Null

Contents Type Number

Dependency Element 0 or more

Request Element 0 or more

Loop Element 0 or more

Appendix.8

Dependency Element

Specify that the data extracted from this episode need to depend on another episode.

Contents Type Number

DependOn Element 1 or more

DependOn Element

Attribute Description Type Number Default

Name Prerequisite episode name. String 1 or more Null

Request Element

This element represents a HTTP request contained in this episode. Variable value bindings for

edge variables and node schema variables are required to be specified here.

Attribute Description Type Number Default

Edge Edge ID for this HTTP request to follow. String 1 Null

Contents Type Number

VarBind Element Unlimited

VarBind Element

Attribute Description Type Number Default

Name
Name of the variable that will be bound to some

value.
String 1 Null

Type
Type of this binding.

Valid values: Edge, Node
Enumeration 0 or 1 Node

Value

A value that will be bound to this variable. The

value attribute can be a constant value or a

variable reference.

String/Reference 1 Null

Appendix.9

Loop Element

Attribute Description Type Number Default

Max

Maximum continuous repetition of this loop during

execution. No specification means loop forever until no

more data can be extracted.

Unit: iteration

Number 0 or 1 100

Contents Type Number

Request Element 0 or more

Loop Element 0 or more

Appendix.10

A.3 Complete WNDL Document Type Definition

<!ELEMENT WNDL (Map, Program)>

<!ATTLIST WNDL Name CDATA #REQUIRED

Version CDATA #REQUIRED>

<!ELEMENT Map (Entrance, Node+)>

<!ELEMENT Entrance (Edge+)>

<!ELEMENT Node (Schema?, ExtractRule*, Edge*)>

<!ATTLIST Node Name CDATA #REQUIRED>

<!ELEMENT Schema (Attr+)>

<!ELEMENT Attr EMPTY>

<!ATTLIST Attr Name CDATA #REQUIRED

TagFilter (KeepAll|KeepLink|NoTag) "KeepLink">

<!ELEMENT ExtractRule (#PCDATA)*>

<!ATTLIST ExtractRule File CDATA #IMPLIED>

<!ELEMENT Edge (EdgeInput?, Query?, Timeout?)>

<!ATTLIST Edge ID CDATA #REQUIRED

Type (Static|Dynamic) "Static"

Base CDATA #IMPLIED

URL CDATA #REQUIRED

Method (Get|Post) "Get"

Dest CDATA #REQUIRED>

<!ELEMENT EdgeInput (EdgeParam+)>

<!ELEMENT EdgeParam EMPTY>

<!ATTLIST EdgeParam Name CDATA #REQUIRED>

<!ELEMENT Query (QueryParam+)>

Appendix.11

<!ELEMENT QueryParam EMPTY>

<!ATTLIST QueryParam FormInput CDATA #REQUIRED

Value CDATA #REQUIRED>

<!ELEMENT Timeout EMPTY>

<!ATTLIST Timeout Wait CDATA #IMPLIED

Retry CDATA #IMPLIED>

<!ELEMENT Program (Session+)>

<!ELEMENT Session (VarDeclr, Access)>

<!ATTLIST Session Name CDATA #REQUIRED>

<!ELEMENT VarDeclr (SessionVar+)>

<!ELEMENT SessionVar EMPTY>

<!ATTLIST SessionVar Name CDATA #REQUIRED

Type (In|Out|InOut|Tmp) "Out"

Label CDATA #IMPLIED

Value CDATA #IMPLIED>

<!ELEMENT Access (Episode+)>

<!ELEMENT Episode (Dependency?, Request*, Loop*)>

<!ATTLIST Episode Name CDATA #REQUIRED

User CDATA #IMPLIED

Passwd CDATA #IMPLIED>

<!ELEMENT Dependency (DependOn+)>

<!ELEMENT DependOn EMPTY>

<!ATTLIST DependOn Name CDATA #REQUIRED>

<!ELEMENT Request (VarBind*)>

<!ATTLIST Request Edge CDATA #REQUIRED>

Appendix.12

<!ELEMENT VarBind EMPTY>

<!ATTLIST VarBind Name CDATA #REQUIRED

Type (Edge|Node) "Node"

Value CDATA #REQUIRED>

<!ELEMENT Loop (Loop*, Request*)>

<!ATTLIST Loop Max CDATA #IMPLIED>

Appendix.13

Appendix B. WNDL Sample Codes

B.1 WNDL Code for amazon.com Books Keyword Query

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE WNDL SYSTEM "WNDL.dtd">

<WNDL Name="Amazon Book Search" Version="0.4">
<Map>

<Entrance>
<Edge ID="1"

Type="Static"
Dest="A"
URL="http://www.amazon.com">

</Edge>
</Entrance>
<Node Name="A">

<Schema>
<Attr Name="form" TagFilter="KeepAll"/>

</Schema>
<ExtractRule File="amazon_home_rule.txt"/>
<Edge ID="2"

URL="$query"
Method="Post"
Type="Dynamic"
Dest="B">
<EdgeInput>

<EdgeParam Name="query"/>
<EdgeParam Name="keyword"/>

</EdgeInput>
<Query>

<QueryParam FormInput="index" Value="books"/>
<QueryParam FormInput="field-keywords" Value="$keyword"/>
<QueryParam FormInput="Go" Value="Go"/>

</Query>
</Edge>

</Node>
<Node Name="B">

<Schema>
<Attr Name="title"/>
<Attr Name="author"/>
<Attr Name="year"/>
<Attr Name="price"/>
<Attr Name="url_next"/>

</Schema>
<ExtractRule File="amazon_rule.txt"/>
<Edge ID="3"

URL="$next"
Dest="B">
<EdgeInput>

<EdgeParam Name="next"/>
</EdgeInput>

</Edge>
</Node>

</Map>

Appendix.14

<Program>
<Session Name="Test">

<VarDeclr>
<SessionVar Name="X" Type="Tmp"/>
<SessionVar Name="Y" Type="In"/>
<SessionVar Name="Z1" Type="Out" Label="Title"/>
<SessionVar Name="Z2" Type="Out" Label="Author"/>
<SessionVar Name="Z3" Type="Out" Label="Date"/>
<SessionVar Name="Z4" Type="Out" Label="Price"/>
<SessionVar Name="Z5" Type="Tmp"/>

</VarDeclr>
<Access>

<Episode Name="dummy">
<Request Edge="1">

<VarBind Name="form" Type="Node" Value="$X"/>
</Request>
<Request Edge="2">

<VarBind Name="query" Type="Edge" Value="$X"/>
<VarBind Name="keyword" Type="Edge" Value="$Y"/>
<VarBind Name="title" Type="Node" Value="$Z1"/>
<VarBind Name="author" Type="Node" Value="$Z2"/>
<VarBind Name="year" Type="Node" Value="$Z3"/>
<VarBind Name="price" Type="Node" Value="$Z4"/>
<VarBind Name="url_next" Type="Node" Value="$Z5"/>

</Request>
<Loop Max="100">

<Request Edge="3">
<VarBind Name="next" Type="Edge" Value="Z5"/>

</Request>
</Loop>

</Episode>
</Access>

</Session>
</Program>

</WNDL>

Appendix.15

B.2 WNDL Code for TaipeiCity

<?xml version="1.0" encoding="Big5" standalone="no"?>
<!DOCTYPE WNDL SYSTEM "WNDL.dtd">

<WNDL Name="TaipeiCity" Version="0.4">
<Map>

<Entrance>
<Edge ID="1"

Type="Static"
Dest="A"
Method="Get"
URL="http://163.29.128.6/OKwork/Data_Com/Company2.asp?haker=0&employ_
type=1"/>

</Entrance>
<Node Name="A">

<Schema>
<Attr Name="job_type_url"/>
<Attr Name="job_type"/>
<Attr Name="number"/>
<Attr Name="explanation"/>

</Schema>
<ExtractRule File="taipeicity-table_rule.txt"/>
<Edge ID="2" URL="$url" Dest="B">

<EdgeInput>
<EdgeParam Name="url"/>

</EdgeInput>
</Edge>

</Node>
<Node Name="B">

<Schema>
<Attr Name="detail_url" TagFilter="KeepAll"/>
<Attr Name="company"/>
<Attr Name="title"/>
<Attr Name="contact"/>
<Attr Name="phone"/>
<Attr Name="post_date"/>

</Schema>
<ExtractRule File="taipeicity_rule.txt"/>

</Node>
</Map>
<Program>

<Session Name="Test">
<VarDeclr>

<SessionVar Name="X1" Type="Tmp"/>
<SessionVar Name="X2" Type="Tmp"/>
<SessionVar Name="X3" Type="Tmp"/>
<SessionVar Name="X4" Type="Tmp"/>
<SessionVar Name="Y1" Type="Out" Label="DETAIL_URL"/>
<SessionVar Name="Y2" Type="Out" Label="COMPANY"/>
<SessionVar Name="Y3" Type="Out" Label="TITLE"/>
<SessionVar Name="Y4" Type="Out" Label="CONTACT_PERSON"/>
<SessionVar Name="Y5" Type="Out" Label="CONTACT_PHONE"/>
<SessionVar Name="Y6" Type="Out" Label="POST_DATE"/>

</VarDeclr>

Appendix.16

<Access>
<Episode Name="dummy">

<Request Edge="1">
<VarBind Name="job_type_url" Type="Node" Value="$X1"/>
<VarBind Name="job_type" Type="Node" Value="$X2"/>
<VarBind Name="number" Type="Node" Value="$X3"/>
<VarBind Name="explanation" Type="Node" Value="$X4"/>

</Request>
<Request Edge="2">

<VarBind Name="url" Type="Edge" Value="$X1"/>
<VarBind Name="detail_url" Type="Node" Value="$Y1"/>
<VarBind Name="company" Type="Node" Value="$Y2"/>
<VarBind Name="title" Type="Node" Value="$Y3"/>
<VarBind Name="contact" Type="Node" Value="$Y4"/>
<VarBind Name="phone" Type="Node" Value="$Y5"/>
<VarBind Name="post_date" Type="Node" Value="$Y6"/>

</Request>
</Episode>

</Access>
</Session>

</Program>
</WNDL>

Appendix.17

B.3 WNDL Code for TTimes

<?xml version="1.0" encoding="Big5" standalone="no"?>
<!DOCTYPE WNDL SYSTEM "WNDL.dtd">

<WNDL Name="TTimes" Version="0.3">
<Map>

<Entrance>
<Edge ID="1"

Type="Static"
Dest="A"
Method="Get"
URL="http://www.ttimes.com.tw/index_sub1.html">

</Edge>
</Entrance>
<Node Name="A">

<Schema>
<Attr Name="headline"/>
<Attr Name="url"/>

</Schema>
<ExtractRule>

<![CDATA[
R(GB,RB):Big5(_)Punc(_)Html(_);
L(GB,RB):;
R(RB,headline):;
L(RB,headline):Ptag();
R(headline,@headline):Html(_);
L(headline,@headline):;
R(@headline,url):Ptag(<a>);
L(@headline,url):;
R(url,RE):Ptag();
L(url,RE):;
R(RE,GE):Ttag()Ttag()Ptag(<!----end sub sub article highlight
bar �� PUB----->)Ptag(<!Sub_Category_Headline_11_Zone>);
L(RE,GE):;

]]>
</ExtractRule>

<Edge ID="2" URL="$url" Dest="B" Method="Get">
<EdgeInput>

<EdgeParam Name="url"/>
</EdgeInput>

</Edge>
</Node>
<Node Name="B">

<Schema>
<Attr Name="path"/>
<Attr Name="title"/>
<Attr Name="subtitle"/>
<Attr Name="reporter"/>
<Attr Name="photo"/>
<Attr Name="source"/>
<Attr Name="dateTime"/>
<Attr Name="paragraph"/>

</Schema>
<ExtractRule File="ttimes_rule.txt"/>

</Node>
</Map>
<Program>

<Session Name="Test">
<VarDeclr>

<SessionVar Name="X" Type="Tmp"/>
<SessionVar Name="Y" Type="Tmp"/>
<SessionVar Name="Z1" Type="Out" Label="Path"/>
<SessionVar Name="Z2" Type="Out" Label="Title"/>
<SessionVar Name="Z3" Type="Out" Label="Subtitle"/>
<SessionVar Name="Z4" Type="Out" Label="Reporter"/>
<SessionVar Name="Z45" Type="Out" Label="PhotoSource"/>
<SessionVar Name="Z5" Type="Out" Label="Source"/>
<SessionVar Name="Z6" Type="Out" Label="Time"/>
<SessionVar Name="Z7" Type="Out" Label="Article"/>

</VarDeclr>

Appendix.18

<Access>
<Episode Name="dummy">

<Request Edge="1">
<VarBind Name="url" Type="Node" Value="$X"/>
<VarBind Name="headline" Type="Node" Value="$Y"/>

</Request>
<Request Edge="2">

<VarBind Name="url" Type="Edge" Value="$X"/>
<VarBind Name="path" Type="Node" Value="$Z1"/>
<VarBind Name="title" Type="Node" Value="$Z2"/>
<VarBind Name="subtitle" Type="Node" Value="$Z3"/>
<VarBind Name="reporter" Type="Node" Value="$Z4"/>
<VarBind Name="photo" Type="Node" Value="$Z45"/>
<VarBind Name="source" Type="Node" Value="$Z5"/>
<VarBind Name="dateTime" Type="Node" Value="$Z6"/>
<VarBind Name="paragraph" Type="Node" Value="$Z7"/>

</Request>
</Episode>

</Access>
</Session>

</Program>
</WNDL>

Appendix.19

B.4 WNDL Code for NYC

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE WNDL SYSTEM "WNDL.dtd">

<WNDL Name="NYC" Version="0.4">
<Map>

<Entrance>
<Edge ID="1"

Type="Static"
Dest="1"
Method="Get"
URL="http://site1.nyc.gov.tw/db/index.asp?sss=1">

</Edge>
</Entrance>
<Node Name="1">

<Schema>
<Attr Name="url"/>
<Attr Name="title"/>

</Schema>
<ExtractRule File="node1_rule.txt"/>
<Edge ID="2" URL="$url" Dest="2">

<EdgeInput>
<EdgeParam Name="url"/>

</EdgeInput>
</Edge>

</Node>
<Node Name="2">

<Schema>
<Attr Name="url"/>
<Attr Name="title"/>

</Schema>
<ExtractRule File="node2_rule.txt"/>
<Edge ID="3" URL="$url" Dest="3">

<EdgeInput>
<EdgeParam Name="url"/>

</EdgeInput>
</Edge>

</Node>
<Node Name="3">

<Schema>
<Attr Name="detail_url"/>
<Attr Name="company"/>
<Attr Name="location"/>
<Attr Name="contact_person"/>
<Attr Name="contact_phone"/>
<Attr Name="contact_method"/>
<Attr Name="requirement"/>
<Attr Name="title"/>
<Attr Name="salary"/>
<Attr Name="post_date"/>
<Attr Name="expire_date"/>
<Attr Name="next"/>

</Schema>
<ExtractRule File="rule1.txt"/>
<Edge ID="4" URL="$next" Dest="3">

<EdgeInput>
<EdgeParam Name="next"/>

</EdgeInput>
</Edge>

</Node>
</Map>

Appendix.20

<Program>
<Session Name="Test">

<VarDeclr>
<SessionVar Name="X" Type="Tmp"/>
<SessionVar Name="Y" Type="Tmp"/>
<SessionVar Name="M" Type="Tmp"/>
<SessionVar Name="N" Type="Tmp"/>
<SessionVar Name="Z1" Type="Out" Label="DETAIL_URL"/>
<SessionVar Name="Z2" Type="Out" Label="COMPANY"/>
<SessionVar Name="Z3" Type="Out" Label="LOCATION"/>
<SessionVar Name="Z4" Type="Tmp" Label="CONTACT_PERSON"/>
<SessionVar Name="Z5" Type="Tmp" Label="CONTACT_PHONE"/>
<SessionVar Name="Z6" Type="Tmp" Label="CONTACT_METHOD"/>
<SessionVar Name="Z7" Type="Tmp" Label="REQUIREMENT"/>
<SessionVar Name="Z8" Type="Out" Label="TITLE"/>
<SessionVar Name="Z9" Type="Out" Label="SALARY"/>
<SessionVar Name="Z10" Type="Out" Label="POST_DATE"/>
<SessionVar Name="Z11" Type="Tmp" Label="EXPIRE_DATE"/>
<SessionVar Name="Z12" Type="Tmp" Label="next_page"/>

</VarDeclr>
<Access>

<Episode Name="dummy">
<Request Edge="1">

<VarBind Name="url" Type="Node" Value="$M"/>
<VarBind Name="title" Type="Node" Value="$N"/>

</Request>
<Request Edge="2">

<VarBind Name="url" Type="Edge" Value="$M"/>
<VarBind Name="url" Type="Node" Value="$X"/>
<VarBind Name="title" Type="Node" Value="$Y"/>

</Request>
<Request Edge="3">

<VarBind Name="url" Type="Edge" Value="$X"/>
<VarBind Name="detail_url" Type="Node" Value="$Z1"/>
<VarBind Name="company" Type="Node" Value="$Z2"/>
<VarBind Name="location" Type="Node" Value="$Z3"/>
<VarBind Name="contact_person" Type="Node" Value="$Z4"/>
<VarBind Name="contact_phone" Type="Node" Value="$Z5"/>
<VarBind Name="contact_method" Type="Node" Value="$Z6"/>
<VarBind Name="requirement" Type="Node" Value="$Z7"/>
<VarBind Name="title" Type="Node" Value="$Z8"/>
<VarBind Name="salary" Type="Node" Value="$Z9"/>
<VarBind Name="post_date" Type="Node" Value="$Z10"/>
<VarBind Name="expire_date" Type="Node" Value="$Z11"/>
<VarBind Name="next" Type="Node" Value="$Z12"/>

</Request>
<Loop Max="5">

<Request Edge="4">
<VarBind Name="next" Type="Edge" Value="$Z12"/>

</Request>
</Loop>

</Episode>
</Access>

</Session>
</Program>

</WNDL>

Appendix.21

B.5 WNDL Code for CTCareer

<?xml version="1.0" encoding="Big5" standalone="no"?>
<!DOCTYPE WNDL SYSTEM "WNDL.dtd">

<WNDL Name="CTCareer" Version="0.4">
<Map>

<Entrance>
<Edge ID="0"

Type="Static"
Dest="A"
URL="http://www.ctcareer.com.tw/findjob.asp?Action=1"/>

</Entrance>
<Node Name="A">

<Edge ID="1"
Type="Dynamic"
Dest="B"
Method="Post"
URL="http://www.ctcareer.com.tw/findjob.exe">
<EdgeInput>

<EdgeParam Name="sJobMainCatID"/>
</EdgeInput>
<Query>

<QueryParam FormInput="sSex" Value="1"/>
<QueryParam FormInput="sJobType" Value="3"/>
<QueryParam FormInput="JobDate" Value="all"/>
<QueryParam FormInput="iJobDiploma" Value="0"/>
<QueryParam FormInput="sCityID" Value="00"/>
<QueryParam FormInput="sCompCatID" Value="00"/>
<QueryParam FormInput="sCompSubCatID" Value="000"/>
<QueryParam FormInput="sJobMainCatID" Value="$sJobMainCatID"/>
<QueryParam FormInput="sJobSubCatID" Value="00"/>
<QueryParam FormInput="sCompanyType" Value="0"/>
<QueryParam FormInput="sInSciencePark" Value="2"/>
<QueryParam FormInput="sIsForeign" Value="2"/>
<QueryParam FormInput="noperpage" Value="50"/>
<QueryParam FormInput="Submit" Value="����"/>
<QueryParam FormInput="index_root" Value="d:\ctcareer2\index"/>

</Query>
</Edge>

</Node>
<Node Name="B">

<Schema>
<Attr Name="detail_url"/>
<Attr Name="company"/>
<Attr Name="title"/>
<Attr Name="degree"/>
<Attr Name="experience"/>
<Attr Name="age"/>
<Attr Name="salary"/>
<Attr Name="location"/>
<Attr Name="post_date"/>
<Attr Name="next" TagFilter="KeepAll"/>

</Schema>
<ExtractRule File="rule.txt"/>
<Edge ID="2"

Type="Dynamic"
Dest="B"
Method="Post"
URL="$next">
<EdgeInput>

<EdgeParam Name="next"/>
</EdgeInput>
<Query>

<QueryParam FormInput="PageDown" Value="� �	
� "/>
</Query>

</Edge>
</Node>

</Map>

Appendix.22

<Program>
<Session Name="Test">

<VarDeclr>
<SessionVar Name="J" Type="In"/>
<SessionVar Name="X1" Type="Out" Label="DETAIL_URL"/>
<SessionVar Name="X2" Type="Out" Label="COMPANY"/>
<SessionVar Name="X3" Type="Out" Label="TITLE"/>
<SessionVar Name="X4" Type="Tmp" Label="DEGREE"/>
<SessionVar Name="X5" Type="Tmp" Label="EXPERIENCE"/>
<SessionVar Name="X6" Type="Tmp" Label="AGE"/>
<SessionVar Name="X7" Type="Out" Label="SALARY"/>
<SessionVar Name="X8" Type="Out" Label="LOCATION"/>
<SessionVar Name="X9" Type="Out" Label="POST_DATE"/>
<SessionVar Name="X10" Type="Tmp"/>

</VarDeclr>
<Access>

<Episode Name="dummy">
<Request Edge="0"/>
<Request Edge="1">

<VarBind Name="sJobMainCatID" Type="Edge" Value="$J"/>
<VarBind Name="detail_url" Type="Node" Value="$X1"/>
<VarBind Name="company" Type="Node" Value="$X2"/>
<VarBind Name="title" Type="Node" Value="$X3"/>
<VarBind Name="degree" Type="Node" Value="$X4"/>
<VarBind Name="experience" Type="Node" Value="$X5"/>
<VarBind Name="age" Type="Node" Value="$X6"/>
<VarBind Name="salary" Type="Node" Value="$X7"/>
<VarBind Name="location" Type="Node" Value="$X8"/>
<VarBind Name="post_date" Type="Node" Value="$X9"/>
<VarBind Name="next" Type="Node" Value="$X10"/>

</Request>
<Loop Max="5">

<Request Edge="2">
<VarBind Name="next" Type="Edge" Value="$X10"/>

</Request>
</Loop>

</Episode>
</Access>

</Session>
</Program>

</WNDL>

Appendix.23

B.6 WNDL Code for JobsDB

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE WNDL SYSTEM "WNDL.dtd">

<WNDL Name="jobsdb" Version="0.4">
<Map>

<Entrance>
<Edge ID="1"

Type="Static"
Dest="A"
Method="Get”
URL="http://www.jobsdb.com.tw/TW/B5/default.asp?pagename=adslist&Sor
tOpt=PostDate&A=&S=J&ListURL=%2FTW%2FB5%2Fdefault.asp&Bu
tton=Ads&SearchText=&SearchRef=&JobArea=000&area=&di
strict=&Find=%B7j%B4M">

</Edge>
</Entrance>
<Node Name="A">

<Schema>
<Attr Name="DETAIL_URL"/>
<Attr Name="TITLE"/>
<Attr Name="COMPANY"/>
<Attr Name="LOCATION"/>
<Attr Name="POST_DATE"/>
<Attr Name="NUMBER"/>
<Attr Name="form" TagFilter="KeepAll"/>

</Schema>
<ExtractRule File="rule_all.txt"/>
<ExtractRule File="rule_form2.txt"/>
<Edge ID="2"

URL="$nextLink"
Method="Get"
Type="Dynamic"
Dest="A">
<EdgeInput>

<EdgeParam Name="nextLink"/>
</EdgeInput>
<Query>

<QueryParam FormInput="Next" Value="�	
"/>
</Query>

</Edge>
</Node>

</Map>
<Program>

<Session Name="Test">
<VarDeclr>

<SessionVar Name="X" Type="Tmp"/>
<SessionVar Name="Z1" Type="Tmp"/>
<SessionVar Name="Z2" Type="Out" Label="TITLE"/>
<SessionVar Name="Z3" Type="Out" Label="COMPANY"/>
<SessionVar Name="Z4" Type="Out" Label="LOCATION"/>
<SessionVar Name="Z5" Type="Out" Label="POST_DATE"/>
<SessionVar Name="Z6" Type="Out" Label="DETAIL_URL"/>
<SessionVar Name="Z7" Type="Tmp"/>

</VarDeclr>

Appendix.24

<Access>
<Episode Name="dummy">

<Request Edge="1">
<VarBind Name="DETAIL_URL" Type="Node" Value="$Z1"/>
<VarBind Name="TITLE" Type="Node" Value="$Z2"/>
<VarBind Name="COMPANY" Type="Node" Value="$Z3"/>
<VarBind Name="LOCATION" Type="Node" Value="$Z4"/>
<VarBind Name="POST_DATE" Type="Node" Value="$Z5"/>
<VarBind Name="NUMBER" Type="Node" Value="$Z6"/>
<VarBind Name="form" Type="Node" Value="$Z7"/>

</Request>
<Loop Max="5">

<Request Edge="2">
<VarBind Name="nextLink" Type="Edge" Value="$Z7"/>

</Request>
</Loop>

</Episode>
</Access>

</Session>
</Program>

</WNDL>

Appendix.25

B.7 WNDL Code for 104Bank

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>
<!DOCTYPE WNDL SYSTEM "WNDL.dtd">

<WNDL Name="104-test" Version="0.4">
<Map>

<Entrance>
<Edge ID="1"

Type="Dynamic"
Dest="A"
Method="Post"
URL="http://www.104.com.tw/cfdocs/job1qry1.dbm">

<Query>
<QueryParam FormInput="submit" Value="���������"/>

</Query>
<Timeout Wait="60" Retry="2"/>

</Edge>
</Entrance>
<Node Name="A">

<Schema>
<Attr Name="button" TagFilter="KeepAll"/>

</Schema>
<ExtractRule File="rule_104job1qry.txt"/>
<Edge ID="2"

Type="Dynamic"
Dest="B"
Method="Get"
URL="$form">

<EdgeInput>
<EdgeParam Name="form"/>

</EdgeInput>
<Timeout Wait="60" Retry="2"/>

</Edge>
</Node>
<Node Name="B">

<Schema>
<Attr Name="button" TagFilter="KeepAll"/>

</Schema>
<ExtractRule File="rule_104taipeicity.txt"/>
<ExtractRule File="rule_104taipeicounty.txt"/>
<ExtractRule File="rule_104others.txt"/>

<Edge ID="3"
Type="Dynamic"
Dest="C"
Method="Get"
URL="$form">

<EdgeInput>
<EdgeParam Name="form"/>

</EdgeInput>
<Timeout Wait="60" Retry="2"/>

</Edge>
</Node>
<Node Name="C">

<Schema>
<Attr Name="new"/>
<Attr Name="company"/>
<Attr Name="detail_url"/>
<Attr Name="title"/>
<Attr Name="job_type"/>
<Attr Name="gender"/>
<Attr Name="degree"/>
<Attr Name="experience"/>
<Attr Name="age"/>
<Attr Name="salary"/>

</Schema>
<ExtractRule File="104_ruleH.txt"/>

</Node>
</Map>

Appendix.26

<Program>
<Session Name="Test">

<VarDeclr>
<SessionVar Name="X1" Type="Tmp" Label="COMPANY_TYPE"/>
<SessionVar Name="X2" Type="Out" Label="LOCATION"/>
<SessionVar Name="X3" Type="Tmp" Label="NEW"/>
<SessionVar Name="X4" Type="Out" Label="COMPANY"/>
<SessionVar Name="X5" Type="Out" Label="DETAIL_URL"/>
<SessionVar Name="X6" Type="Out" Label="TITLE"/>
<SessionVar Name="X7" Type="Tmp" Label="JOB_TYPE"/>
<SessionVar Name="X8" Type="Tmp" Label="GENDER"/>
<SessionVar Name="X9" Type="Tmp" Label="DEGREE"/>
<SessionVar Name="X10" Type="Tmp" Label="EXPERIENCE"/>
<SessionVar Name="X11" Type="Tmp" Label="AGE"/>
<SessionVar Name="X12" Type="Out" Label="SALARY"/>

</VarDeclr>
<Access>

<Episode Name="dummy">
<Request Edge="1">

<VarBind Name="button" Type="Node" Value="$X1"/>
</Request>
<Request Edge="2">

<VarBind Name="form" Type="Edge" Value="$X1"/>
<VarBind Name="button" Type="Node" Value="$X2"/>

</Request>
<Request Edge="3">

<VarBind Name="form" Type="Edge" Value="$X2"/>
<VarBind Name="new" Type="Node" Value="$X3"/>
<VarBind Name="company" Type="Node" Value="$X4"/>
<VarBind Name="detail_url" Type="Node" Value="$X5"/>
<VarBind Name="title" Type="Node" Value="$X6"/>
<VarBind Name="job_type" Type="Node" Value="$X7"/>
<VarBind Name="gender" Type="Node" Value="$X8"/>
<VarBind Name="degree" Type="Node" Value="$X9"/>
<VarBind Name="experience" Type="Node" Value="$X10"/>
<VarBind Name="age" Type="Node" Value="$X11"/>
<VarBind Name="salary" Type="Node" Value="$X12"/>

</Request>
</Episode>

</Access>
</Session>

</Program>
</WNDL>

